BACK TO INDEX

Publications about 'Semantic Similarity'
Articles in journal, book chapters
  1. Ergun Bi�ici. Machine Translation Performance Prediction System: Optimal Prediction for Optimal Translation. Springer Nature Computer Science, 3, 2022. ISSN: 2661-8907. [doi:10.1007/s42979-022-01183-0] Keyword(s): Machine Learning, Machine Translation. [Abstract] [bibtex-entry]


  2. Ergun Bi�ici. Predicting the Performance of Parsing with Referential Translation Machines. The Prague Bulletin of Mathematical Linguistics, 106:31-44, 2016. ISSN: 1804-0462. [doi:10.1515/pralin-2016-0010] Keyword(s): referential translation machines, machine translation. [Abstract] [bibtex-entry]


  3. Ergun Bi�ici and Andy Way. Referential translation machines for predicting semantic similarity. Language Resources and Evaluation, pp 1-27, 2015. ISSN: 1574-020X. [doi:10.1007/s10579-015-9322-7] Keyword(s): Referential translation machine, RTM, Semantic similarity, Machine translation, Performance prediction, Machine translation performance prediction. [Abstract] [bibtex-entry]


Conference articles
  1. Ergun Bi�ici. RTM at SemEval-2017 Task 1: Referential Translation Machines for Predicting Semantic Similarity. In 11th International Workshop on Semantic Evaluation (SemEval-2017), Vancouver, Canada, pages 194-198, 8 2017. [PDF] [Abstract] [bibtex-entry]


  2. Ergun Bi�ici. RTM at SemEval-2016 Task 1: Predicting Semantic Similarity with Referential Translation Machines and Related Statistics. In SemEval-2016: Semantic Evaluation Exercises - Inter. Workshop on Semantic Evaluation, San Diego, CA, USA, pages 758-764, 6 2016. [WWW] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Semantic Similarity. [Abstract] [bibtex-entry]


  3. Ergun Bi�ici. RTM-DCU: Predicting Semantic Similarity with Referential Translation Machines. In SemEval-2015: Semantic Evaluation Exercises - International Workshop on Semantic Evaluation, Denver, CO, USA, pages 56-63, 6 2015. [WWW] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Semantic Similarity. [Abstract] [bibtex-entry]


  4. Ergun Bi�ici and Andy Way. RTM-DCU: Referential Translation Machines for Semantic Similarity. In SemEval-2014: Semantic Evaluation Exercises - International Workshop on Semantic Evaluation, Dublin, Ireland, pages 487-496, 8 2014. [WWW] [PDF] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Semantic Similarity. [Abstract] [bibtex-entry]


  5. Ergun Bi�ici. Referential Translation Machines for Quality Estimation. In Eighth Workshop on Statistical Machine Translation, Sofia, Bulgaria, pages 343-351, 8 2013. [WWW] [PDF] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Natural Language Processing. [Abstract] [bibtex-entry]


  6. Ergun Bi�ici and Josef van Genabith. CNGL-CORE: Referential Translation Machines for Measuring Semantic Similarity. In *SEM 2013: The Second Joint Conf. on Lexical and Computational Semantics, Atlanta, GA, USA, pages 234-240, 6 2013. [WWW] [PDF] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Natural Language Processing, Artificial Intelligence. [Abstract] [bibtex-entry]


  7. Ergun Bi�ici and Josef van Genabith. CNGL: Grading Student Answers by Acts of Translation. In SemEval-2013: Semantic Evaluation Exercises - International Workshop on Semantic Evaluation, Atlanta, GA, USA, pages 585-591, 6 2013. [WWW] [PDF] Keyword(s): Machine Translation, Machine Learning, Performance Prediction, Natural Language Processing. [Abstract] [bibtex-entry]



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces r�pertoires sont rendus disponibles par les auteurs qui y ont contribu� en vue d'assurer la diffusion � temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gard�s par les auteurs et par les d�tenteurs du copyright, en d�pit du fait qu'ils pr�sentent ici leurs travaux sous forme �lectronique. Les personnes copiant ces informations doivent adh�rer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas �tre rendus disponibles ailleurs sans la permission explicite du d�tenteur du copyright.




Last modified: Sun Feb 5 17:37:19 2023
Author: ebicici.


This document was translated from BibTEX by bibtex2html