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Abstract
Sparse feature representations can be used in var-
ious domains. We compare the effectiveness
of L1 regularization techniques for regression
to learn mappings between features given in a
sparse feature matrix. We apply these techniques
for learning word alignments commonly used for
machine translation. The performance of the
learned mappings are measured using the phrase
table generated on a larger corpus by a state of the
art word aligner. The results show the effective-
ness of using L1 regularization versus L2 used in
ridge regression.

1. Introduction
In statistical machine translation, parallel corpora, which
contain translations of the same documents in source and
target languages, are used to estimate a likely target trans-
lation for a given source sentence based on the observed
translations. Sparse feature representations can be used in
various domains. When the number of instances, m is sig-
nificantly smaller than the number of features, n, m � n,
then we have an under determined system of equations.

We examine the effectiveness of regression to find the map-
pings between sparsely observed feature sets. Regulariza-
tion of the cost function plays an important role to increase
the performance; therefore we experiment with L1 regular-
ization. We analyze and devise instance selection methods
for a given source sentence to increase the performance of
the word alignment. The performance is estimated by com-
paring with the phrase table obtained by GIZA++ (Och &
Ney, 2003), which is a state of the art word alignment tool
commonly used in phrase-based machine translation sys-
tems. GIZA++ combines the result of various statistical
word alignment models and performs symmetrization of
the generated directed alignments.

2. Regression Based Alignment Learning
Let the feature matrices MX ∈ RNX×m and MY ∈
RNY ×m be obtained from m training instances such that

each column of MX (MY ) is obtained by a feature mapper
ΦX : X∗ → RNX (ΦY : Y ∗ → RNY ). The ridge regres-
sion solution usingL2 regularization is given in Equation 1:

HL2 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ ‖H‖2F (1)

= MY MT
X(MXMT

X + λI)−1 (2)

HL1 = arg min
H∈RNY ×NX

‖MY −HMX ‖2F +λ ‖H‖1 . (3)

HL2 does not give us a sparse solution as most of the coef-
ficients remain non-zero. L1 norm behaves both as a fea-
ture selection technique and a method for reducing coeffi-
cient values. Equation 3 presents the lasso (least absolute
shrinkage and selection operator) (Tibshirani, 1996) solu-
tion where the regularization term is now the L1 matrix
norm defined as ‖ H ‖1=

∑
i,j |Hi,j |. HL2 can be found

by taking the derivative but since L1 regularization cost is
not differentiable, HL1 can be found by optimization or ap-
proximation techniques.

We perform experiments with forward stagewise regres-
sion (Hastie et al., 2006) (FSR) and quadratic optimiza-
tion (QP) techniques to find HL1 . The incremental forward
stagewise regression algorithm increases the weight of the
predictor variable that is most correlated with the residual
by a small amount, ε, multiplied with the sign of the corre-
lation at each step. As ε→ 0, the profile of the coefficients
resemble the lasso (Hastie et al., 2001). We can pose lasso
as a QP problem as follows (Mørup & Clemmensen, 2007).
We assume that the rows of MY are independent and solve
for each row i, Myi ∈ R1×m, using non-negative variables
h+

i ,h
−
i ∈ RNX×1 such that hi = h+

i − h−i :

hi = ‖Myi − hiMX‖2F +λ

NXX
k=1

|hi,k| (4)

hi = arg min
h̃i
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s.t. h̃i > 0, gMX =

»
MX

−MX

–
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ˆ
h+
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˜

Orthogonality of the coefficient matrix can be desirable
since the L2 regularization parameter penalizes in propor-
tion to HT H and setting HT H = HHT = I corresponds



to assuming that features are selected independently (i.e.
correlation of source and target features is identity). There-
fore, we also experiment with symmetric coefficient matrix

HS =
√

H×←−HT , where × stands for the element-wise

multiplication operator and
←−
H is the coefficient matrix ob-

tained when solving the inverse problem (i.e. estimating
MX by using

←−
HMY ).

3. Experiments
Training set contains about 80K English-German parallel
news articles available from WMT2009 (Koehn & Had-
dow, 2009). We conducted experiments on 10 sentences
with 10 tokens (short) and another 10 sentences with 20
tokens (long). The feature mappers are 3-spectrum count-
ing word kernels, which consider all N -grams up to order
3 weighted by the number of tokens in the feature. Proper
selection of training instances plays an important role to
learn feature mappings within limited time and at expected
accuracy levels. Instance selection is performed with the tf-
idf (term frequency, inverse document frequency) weight-
ing using the cosine similarity. We experiment with differ-
ent instance selection methods: (i) per source sentence, (ii)
per source sentence feature, (iii) instances’ longest com-
mon matches per source sentence feature. Selection (ii)
selects instances per feature (ipf ) either proportional to the
length of the feature, f , (ipf = n × length(f)) or dynam-
ically proportional to n/ log(1 + idfScore(f)/9.0). Dy-
namic instance selection select more instances from rare
features whose idf scores are higher. Selection (iii) uses
only the longest matching parts to try to remove features
coming from irrelevant tokens. We discard features that
are observed less than three times from the training set.

Evaluation: We evaluate the performance of the coeffi-
cient matrix, H, by measuring the precision, recall, and
fmeasure when compared with the entries in the phrase ta-
ble, PT, obtained by GIZA++ using the full training set.
Let T contain the training indices of the target features in
the PT that match the source sentence features, S, found in
H whose values are greater than zero, then we define:

precision =

∑
i∈S

∑
j∈T Hj,i PTi,j∑

j∈T

∑
∗>0 Hj,∗

(6)

recall =

∑
i∈S

∑
j∈T Hj,i PTi,j∑

i∈S

∑
j∈T PTi,j

(7)

fmeasure =
2× precision× recall

precision + recall
(8)

where Hj,i stands for the coefficient for target feature j, tj ,
and source feature i, si,

∑
∗>0 Hj,∗ sums over all the en-

tries in row j that are greater than 0, and PTi,j is the multi-
plication of the lexical translation probabilities p(si|tj) and
p(tj |si) found in PT. We also use top3%, which measures

the percentage of observing the top 3 scored target features
in the phrase table translations, sqLoss, which measures the
squared loss of the estimation with respect to the target
sentence, and cov., which measures the average coverage
of the training set in representing the target sentence. Ta-
ble 1 presents our evaluation of the performances of differ-
ent techniques when training instances are selected dynam-
ically with n = 4. The effectiveness of selection (iii) can
be seen in the increase in the precision, recall, and fmeasure
metrics and decrease in computation time in Table 2.

Conclusion: Our findings are listed below:

• L1 regularization helps improve the performance. L2

solution performs worse. QP in general perform better
than FSR but takes very long time.

• Symmetrization helps in improving precision, recall,
and fmeasure score. It reduces sqLoss in FSR and
sometimes in QP solutions.

• Coverage and top3% increase as we select more in-
stances, but this decreases precision and sqLoss due
to adding more noise.

• QP quickly becomes infeasible due to increased com-
putation time when NX and NY increase. Selection
(iii) helps us increase precision, recall, and fmeasure
without increasing the sqLoss too much.
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Table 1. Numbers represent averages. Time is in seconds. S suffix is for symmetrized techniques.
Top: Performances of different techniques when training instances are selected dynamically with n = 4.
Bottom: Selection (i) results using long set of sentences. 50 and 100 instances per sentence are selected.

n=4, dynamic prec. recall fmeas. top3% sqLoss time

short

L2 0.007 0.038 0.011 0.206 39.521 0.204
L2S 0.006 0.039 0.010 0.223 69.514 0.674
QP 0.061 0.062 0.061 0.377 26.208 335.121

QPS 0.162 0.072 0.098 0.377 30.281 352.124
FSR 0.038 0.070 0.049 0.335 62.973 24.490

FSRS 0.193 0.076 0.106 0.318 32.456 23.674

long

L2 0.0 0.034 0.009 0.297 69.240 0.960
L2S 0.0 0.037 0.008 0.276 129.042 1.932
QP 0.066 0.081 0.072 0.419 51.146 1105.915

QPS 0.189 0.095 0.125 0.419 51.172 1058.366
FSR 0.056 0.094 0.069 0.362 99.644 73.107

FSRS 0.239 0.102 0.141 0.353 53.125 79.008
n, selection (i) prec. recall fmeas. top3% sqLoss time

50

L2 0.010 0.033 0.015 0.172 43.242 0.067
L2S 0.009 0.036 0.014 0.186 50.194 0.137
QP 0.091 0.056 0.068 0.350 37.885 31.119

QPS 0.255 0.054 0.087 0.335 31.685 30.879
FSR 0.051 0.085 0.063 0.285 79.713 3.906

FSRS 0.321 0.085 0.131 0.275 33.421 3.190

100

L2 0.007 0.035 0.011 0.251 55.511 0.363
L2S 0.006 0.038 0.010 0.254 74.590 0.815
QP 0.089 0.071 0.079 0.426 43.309 416.296

QPS 0.257 0.082 0.123 0.417 39.404 423.335
FSR 0.053 0.085 0.065 0.377 84.525 31.043

FSRS 0.294 0.091 0.137 0.358 43.266 27.953

Table 2. Numbers represent averages taken over the long set of sentences. Time is in seconds.
Top: QP performance when training instances are selected dynamically and with proportion to length.
Bottom: QP performance when training instances are selected dynamically with n and only matching parts are used as training sentences.

QP n ipf cov. prec. recall fmeas. top3% sqLoss time

dynamic

1 1.616 0.324 0.083 0.074 0.077 0.330 42.534 113.205
2 1.663 0.328 0.081 0.073 0.076 0.342 44.195 143.112
3 2.111 0.360 0.076 0.080 0.077 0.359 49.779 508.252
4 2.704 0.378 0.066 0.081 0.072 0.419 51.146 1105.915

length

1 1.616 0.324 0.083 0.074 0.077 0.330 42.534 114.167
2 1.954 0.347 0.074 0.075 0.073 0.359 48.205 411.712
3 2.439 0.365 0.066 0.079 0.071 0.394 49.872 1132.119
4 3.113 0.385 0.057 0.079 0.066 0.435 51.777 2508.383

n m NX NY ipf cov. prec. recall fmeas. top3% sqLoss time
2 81.000 385.700 427.500 1.737 0.243 0.095 0.072 0.081 0.222 41.411 29.661
3 103.500 428.900 474.000 2.214 0.250 0.106 0.084 0.093 0.250 43.289 25.440
4 133.600 433.700 479.900 2.849 0.254 0.113 0.091 0.100 0.263 43.243 52.357
5 162.000 441.600 490.200 3.450 0.256 0.120 0.091 0.102 0.279 43.399 52.019
6 190.300 441.600 494.100 4.048 0.262 0.122 0.096 0.105 0.283 44.083 92.475
7 216.500 442.000 495.800 4.605 0.264 0.129 0.101 0.112 0.286 44.110 89.570
8 242.400 442.300 497.600 5.148 0.270 0.131 0.101 0.112 0.287 44.310 90.859
9 266.800 442.700 498.700 5.662 0.270 0.134 0.100 0.113 0.296 44.249 155.055

10 290.800 443.000 500.100 6.165 0.273 0.136 0.099 0.113 0.298 44.343 175.650


