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Abstract. Density based clustering methods allow the identification of arbitrary,
not necessarily convex regions of data points that are densely populated. The
number of clusters does not need to be specified beforehand; acluster is defined
to be a connected region that exceeds a given density threshold. This paper in-
troduces the notion of local scaling in density based clustering, which determines
the density threshold based on the local statistics of the data. The local maxima of
density are discovered using ak-nearest-neighbor density estimation and used as
centers of potential clusters. Each cluster is grown until the density falls below a
pre-specified ratio of the center point’s density. The resulting clustering technique
is able to identify clusters of arbitrary shape on noisy backgrounds that contain
significant density gradients. The focus of this paper is to automate the process
of clustering by making use of the local density informationfor arbitrarily sized,
shaped, located, and numbered clusters. The performance ofthe new algorithm is
promising as it is demonstrated on a number of synthetic datasets and images for
a wide range of its parameters.

1 Introduction

Clusteringis the process of allocating points in a given dataset into disjoint and mean-
ingful clusters. Density based clustering methods allow the identification of arbitrary,
not necessarily convex regions of data points that are densely populated. Density based
clustering does not need the number of clusters beforehand but relies on a density-based
notion of clusters such that for each point of a cluster the neighborhood of a given radius
(ε) has to contain at least a minimum number of points (℘). However, finding the correct
parameters for standard density based clustering [1] is more of an art than science.

This paper introduces the locally scaled density based clustering (LSDBC) algo-
rithm, which clusters points by connecting dense regions ofspace until the density
falls below a threshold determined by the center of the cluster. LSDBC takes two input
parameters:k, the order of nearest neighbor to consider for each data point for den-
sity calculation andα, which determines the boundary of the current cluster expansion
based on its density. The algorithm is robust to background noise and density gradients
for a wide range of its parameters.

Density based clustering in its original form, DBSCAN [1], is sensitive to minor
changes in its parameters known as the neighborhood of a given radius (ε) and the
minimum number of points that need to be contained within theneighborhood (℘). We
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discuss density based clustering and identify some of its drawbacks in Sect. 2. Although
using different parameters for the radius of the neighborhood and the number of points
contained in it appear to give some flexibility, these two parameters are actually depen-
dent on each other. Instead, the LSDBC technique employs theidea of local scaling.
We order points according to their distance to theirkth neighbor. This gives an approx-
imate measure of how dense the region around each point is. Then, starting with higher
density points, we cluster densely populated regions together. The resulting clustering
technique does not require fine tuning of parameters and is more robust. OPTICS [2]
also bases its clustering decisions on the local density by using kNN type density esti-
mation (differences are explored in Sect. 6).

The local scaling technique, previously employed successfully by spectral cluster-
ing [3], makes use of the local statistics of points to separate the clusters within the
dataset. The idea is to scale each point in the dataset with a factor proportional to its
distance to itskth neighbor. Section 3 discusses local scaling and how it canbe used for
clustering purposes. We show that when local scaling is usedin density based cluster-
ing, it creates more robust clusters and allows the automatic creation of clusters without
any need for parameters other thank, the order of nearest neighbor to consider, andα,
which decides when the drop in the density is necessary for the cluster change.

Density based clustering is important for knowledge discovery in databases. Its
practical application aresas include biomedical image segmentation [4], molecular bi-
ology and geospatial data clustering [5], and earth sciencetasks [1].

The following lists the contributions of this paper. We introduce locally scaled den-
sity based clustering (Sect. 4), which correctly ignores background clutter and identifies
clusters within background noise. LSDBC is also robust to changes in the parameters
and produces stable clusters for a wide range of them. LSDBC makes the underlying
structure of high-dimensional data accessible. The problems we deal with include: (1)
finding appropriate parameter values, (2) handling data with different local statistics, (3)
clustering in the presence of background clutter, and (4) reducing the number of param-
eters used. Our results show better performance than prominent clustering techniques
such as DBSCAN,k-means, and spectral clustering with local scaling on synthetic
datasets (Sect. 5). Our results on image segmentation tasksalso show that LSDBC is
able to handle image data and segment it into meaningful regions. Related work and
density estimation are discussed in Sect. 6 and the last section concludes.

2 Density Based Clustering

Density based clustering differentiates regions which have higher density than its neigh-
borhood and does not need the number of clusters as an input parameter. Regarding a
termination condition, two parameters indicate when the expansion of clusters should
be terminated: given the radius of the volume of data points to look for, ε, a minimum
number of points for the density calculations,℘, has to be exceeded.

Let d(p, q) give the distance between two pointsp andq; we give the basic termi-
nology of density based clustering below.ε neighborhood of a pointp is denoted by
Nε(p) and is defined byNε(p) = {q ∈ Points | d(p, q) ≤ ε}, wherePoints is the set
of points in our dataset. Acore pointis defined as a point above the density threshold
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wrt. ε and ℘, i.e. |Nε(p)| ≥ ℘. A border point is defined as a point below the threshold
but that belongs to theε neighborhood of a core point.

Definition 1 (Directly density-reachable). A point p is directly density reachable
from a pointq wrt. ε and ℘, if p ∈ Nε(q) and |Nε(q)| ≥ ℘ (core point condition).

Definition 2 (Density-reachable).
A pointp is density reachable from a pointq wrt. ε and ℘, if there is a chain of points
p1, p2, ..., pn, p1 = q, pn = p such thatpi+1 is directly density reachable frompi.

Definition 3 (Density-connected).
A pointp is density connected to a pointq wrt. ε and ℘, if there is a pointr such that
bothp andq are density reachable fromr wrt. ε and ℘.

A clusterC wrt. ε and ℘ is a non-empty set of points such that∀p, q ∈ C, p is
density connected toq wrt. ε and ℘.

Selecting appropriate parameters,ε and ℘, is difficult in DBSCAN and even in the
best setting, the results may not be good. Figure 1 gives representative results using our
synthetic datasets. Note that minor changes in the parameters ε and ℘ creates spurious
clustering results. In all of the following graphics, gray points are considered as noise.

Esteret al. [1] suggest that the user will look at the sorted4-dist graph (plot of
points’ distance to their4th nearest neighbor in descending order) and select a threshold
point, which will divide the points into two sets: noise and clusters. The selected thresh-
old, 4NNDistvalue, can be used for determining the parameters as in:ε = 4NNDist
and ℘ = 4. However, for some datasets, the threshold point may not be easy to pick, it
may not be unique if there is variance in the density,k=4 may not be the ideal setting,
and this approach assumes user intervention.

DBSCAN, Eps:0.17 MinPts:5 DBSCAN, Eps:0.17 MinPts:6 DBSCAN, Eps:0.16 MinPts:5 DBSCAN, Eps:0.16 MinPts:5 DBSCAN, Eps:0.17 MinPts:4

Fig. 1.Density based clustering is sensitive to minor changes inε and ℘

3 Local Scaling

Zelnik-Manor and Perona [3] successfully applied local scaling to spectral clustering.
Local scaling is a technique which makes use of the local statistics of the data when
identifying clusters. This is done by scaling the distancesaround each point in the
dataset with a factor proportional to its distance to itskth nearest neighbor. As a re-
sult, local scaling finds the scale factors for clusters withdifferent densities and creates
an affinity matrix in which the affinities are high within clusters and low across clusters.
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Given two pointsxi andxj from a dataset,X , letAxi,xj
denote the affinity between

the two points, showing how similar two objects are. Based on[6], ∀xi, xj ∈ X , let the
following properties hold:

Axi,xj
∈ [0, 1], Axi,xi

= 1, Axi,xj
= Axj ,xi

. (1)

We could defineAxi,xj
as:

Axi,xj
= exp(−

d2(xi, xj)

σ2
), (2)

whered(xi, xj) is any distance function (such as the Euclidean (||xi − xj ||
2) or the

cosine between feature vectors) andσ is a threshold distance below which two points
are thought to be similar and above which two points are considered dissimilar. A single
scaling parameter,σ, may not work for the whole dataset when clusters with different
densities are present. Instead, a local scaling parameterσi can be calculated for each
data pointxi such that the affinity between a pair of points,xi andxj , is given by:

Âij = exp(−
d2(xi, xj)

σiσj
), (3)

whered(xi, xj) corresponds to the distance fromxi to xj . When selecting the local
scaling parameterσi, local statistics of the neighborhood of pointxi is considered. The
choice in [3] is:

σi = d(xi, x
k
i ), (4)

wherexk
i is thekth closest neighbor of pointxi andk is chosen to be7. Thus,σi =

7NNDist(xi) in spectral clustering with local scaling.

4 Locally Scaled Density Based Clustering

Locally scaled density based clustering algorithm clusters points by connecting dense
regions of space until the density falls below a threshold determined by the center of
the cluster. LSDBC takes two input parameters,k, the order of nearest neighbor to
consider for each point in the dataset for density calculation andα, which determines
the boundary of the current cluster expansion based on its density.

The LSDBC algorithm first calculates theε values for each point based on their
kNN distances.ε allows us to order points based on their density. Smallerε values
correspond to denser regions in the dataset. The set of points are then sorted in ascend-
ing order of theirε. Algorithm 1 presents the main method of LSDBC. The function
kNNDistVal takes a point and a numberk and returns the distance of the point to its
kth nearest neighbor,ε, as well as the set of itsk nearest neighbors.localMax function
ensures that the selected point is the most dense point locally in its neighborhood.

The ExpandClusterprocedure, given in Algorithm 2, expands the cluster of a given
point, p, by exploring neighboring points and placing them into the same cluster asp

when their density is abovedensity(p)
2α . The initial pointp is called the center point of

the cluster. Theα parameter prevents the expansion of a given cluster into regions of
points with a density smaller than a factor of2−α relative to the center. The density of
a given pointp is calculated as:

density(p) =
k

εn
, (5)
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Input:D: Distance matrix,k: input to kNN-dist function,n: number of dimensions,α.
Output:Allocation of points to clusters.

for p ∈ Pointsdo
p.class= UNCLASSIFIED;
[p.Eps, p.neighbors] = kNNDistVal(D, p, k);

end
Points.sort(); /* Sort on Eps */
ClusterID= 1;
for p ∈ Pointsdo

if p.class== UNCLASSIFIEDand localMax(p) then
ExpandCluster(p, ClusterID, n, α);
ClusterID= ClusterID+ 1;

end
end

Algorithm 1 : LSDBC: Locally Scaled Density Based Clustering Algorithm

wheren corresponds to the dimensionality of the dataset. A pointp′ is defined as acore
point if its density exceeds the density of the center point for thecluster multiplied by
2−α:

k

2αεn
p

≤
k

εn
p′

. (6)

Therefore,
εp′ ≤ 2α/nεp. (7)

Equation (7) provides us a cutoff point when expanding cluster regions.
In the final clustering scheme of LSDBC, we need only two parameters: thek value,

which is a parameter corresponding to up to which closest neighbor we should look for
when clustering points, andα which takes role in identifying a cutoff density for the
cluster expansion. The focus of this paper is to automate theprocess of clustering by
making use of the local density information for arbitrarilysized, shaped, located, and
numbered clusters. LSDBC enjoys good clustering results for a wide range of values
for k and α. An obvious advantage of LSDBC is that it is not sensitive to background
density variations and therefore, it can be used with a wide range of clustering problems.

Computational Complexity. kNNDistVal operates inO(n) time. As it was sug-
gested in [1], if we use a tree-based spatial index,k nearest neighbors can be retrieved in
O(log n) time. Therefore, the run-time complexity of LSDBC algorithm isO(n log n),
which is the same as DBSCAN’s run-time complexity.

5 Experiments

We compared our algorithm, LSDBC with (1) the original density based clustering algo-
rithm, DBSCAN, (2) spectral clustering with local scaling,and (3)k-means clustering.
The results show that LSDBC’s performance is superior to these three clustering tech-
niques on the problems we analyzed. Spectral clustering with local scaling achieves
comparable performance on some of the synthetic datasets. LSDBC produces robust
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Input: point, ClusterID, n: number of dimensions,α.

point.class= ClusterID;
Seeds= point.neighbors;
for currentP∈ Seedsdo

if currentP.class== UNCLASSIFIEDthen
currentP.class= ClusterID;

else
Seeds.delete(currentP);

end
end
while Seeds.length> 0 do

currentP= Seeds.first();
if currentP.Eps≤ 2α/n × point.Epsthen

Neighbors= currentP.neighbors;
for neighborP∈ Neighborsdo

if neighborP.class== UNCLASSIFIEDthen
Seeds.append(neighborP);
neighborP.class= ClusterID;

end
end

end
Seeds.delete(currentP);

end

Algorithm 2 : ExpandCluster: Expands the cluster of a given point

clusters for a broad range of values fork and α. The robustness of LSDBC for different
values ofk can be seen in Fig. 2.

In this set of experiments, we compare the results of LSDBC with the clustering
techniques of DBSCAN,k-means, and spectral clustering with local scaling. For each
dataset,k-means and spectral clustering methods accept the number ofclusters as in-
put wherek=20 is the number of ideal clusters for the given dataset. Therefore, for the
clustering methods that we compare, including DBSCAN, we chose the best possible
setting for the clustering. In Fig. 3, we compare their performance on a more complex
dataset. In all of these examples, the performance of LSDBC is superior to others in
terms of its ability to respect the boundaries of closely located and similarly populated
regions. The difference between LSDBC’s results is that when k=6 or k=7, the back-
ground clutter is divided into3 and2 clusters respectively whereas whenk=8, they
form a single cluster. When we look at the results ofk-means and spectral clustering
with local scaling, even under the best settings, we can see that they divide densely pop-
ulated regions into separate clusters and merge regions with different densities together
whereas DBSCAN classifies regions with lower density below athreshold as noise.

Apart from generating unnatural clusters in some datasets,another drawback of
spectral clustering andk-means is their requirement of the number of clusters as input,
whereas LSDBC can discover clusters of arbitrary size, shape, location, and number
without any knowledge of the number of clusters in the data.
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Fig. 2.Robustness of LSDBC for different values ofk and α

In our next set of experiments, we deal with the task of image segmentation. The
results can be seen in Figs. 4, 5, 6, and 7. LSDBC is able to decipher transparency in
the images. For instance, the background seen through the handle hole in the still life
image (Fig. 4) and the background itself is clustered into the same cluster. The resulting
clusterings can be used to summarize images as well as compress them. As can be seen
from the resulting clusterings, LSDBC provides an adequateseparation of the original
images, which makes it useful for the task of filtering trees [7] (see Fig. 5).

6 Related Work and Density Estimation

In Esteret al. [1], density based clustering (DBSCAN) was presented as a clustering
technique which can discover clusters of arbitrary shape. Hinneburg and Keim [8] in-
troduced a new density based clustering technique as DENCLUE, which sums the den-
sity impact of a data point within its neighborhood. In effect, density based clustering
methods estimate the density of points in a given dataset to cluster and differentiate
densely populated regions. Two methods are commonly used for density estimation:
Parzen windows andk-nearest neighbor (kNN) estimation [9]. In Parzen windows, we
assume the existence of ad dimensional hypercube with volumeV = εd, whereε is
the length of an edge of the hypercube. Then, the number of points falling within this
volume gives an estimate of the density (pick a radius and count the number of neigh-
bors). Problems arise when choosingε, which determines the volume,V , also known
as the problem of finding the best window size. InkNN, we choosek nearest neighbors
and grow the correspondingε and volumeV until it encloses thek + 1 points (pick a
number of neighbors and compute the radius).

Density based clustering algorithms can also be divided into two types based on how
they estimate the density: Parzen window type andkNN type. Among the Parzen win-
dow type approaches, we can count DBSCAN [1], DENCLUE [8], and CLIQUE [10].
Most of these algorithms suffer from the problem of choosingthe best window size.
LSDBC and OPTICS [2] are bothkNN type density based clustering algorithms. OP-
TICS focuses on providing a representation of data (e.g. reachability plots) that enables
different clusterings to be implemented and generates an ordering of points based on
the order in which they are explored by the subroutine ExpandClusterOrder. LSDBC
starts with a density based ordering and performs cluster expansions starting with the
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DBSCAN,r=0.04, density=5:
Only highly dense regions are recognized.

LSDBC,k=6, α=3:
Background clutter is divided into 3 clusters.

k-means,k=20:
Densely populated regions are divided.

LSDBC,k=7, α=3:
Background clutter is divided into 2 clusters.

Spectral with local scaling,k=20:
Densely populated regions are divided,

diversely populated regions merged.

LSDBC,k=8, α=3:
Background clutter is classified as a single

cluster.

Fig. 3. Comparison of clustering performance on a dataset with different local statistics
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Flowers in vase LSDBC:k=7, α=6 k=22, α=3 k=13, α=5

Fig. 4.Segmentation of a still life image. Notice the identification of the same transparent regions,
which can be seen through the handle of the vase

Trees (original) LSDBC:k=17, α=5 k=7, α=4 k=13, α=9

Fig. 5. Segmentation of a group of trees and the sky

Oludeniz (original) LSDBC:k=12, α=5 k=10, α=6 k=13, α=6

Fig. 6.Segmentation of an image of a seaside, Oludeniz

Ataturk (original) LSDBC:k=10, α=7 k=10, α=8 k=6, α=5

Fig. 7. Segmentation of an image of Ataturk
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densest available point. Also, the cut-off for clusters in OPTICS is decided based on
the density gradient of the edges of clusters, whereas LSDBCbases its cut-off on the
density of the center of the cluster, which we believe to be more robust and noise free.

7 Conclusion

We have introduced the locally scaled density based clustering method. LSDBC discov-
ers local maxima of density using a k-nearest-neighbor density estimation method and
grows each cluster until the density falls below a pre-specified ratio of the center point’s
density. The resulting clustering technique is able to identify clusters of arbitrary shape
on noisy backgrounds that contain significant density gradients. The performance of the
new algorithm is demonstrated on a number of synthetic datasets and real images and
shown to be promising for a broad range of its parameters.

LSDBC can be effectively used as a tool for summarizing the inherent relationships
within the data. We have shown that LSDBC’s performance in differentiating between
densely populated regions is better than other clustering algorithms that we considered.
LSDBC can also be used to summarize and segment images into meaningful regions.
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