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Today's Talk

e Density Based Clustering

e Local Scaling

e Locally Scaled Density Based Clustering (LSDBC)
e Experiments

e Conclusion
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Density Based Clustering

e <: Radius of the volume of data points to look for
e ©: Minimum number of points that has to be exceeded

e Let d(p,q) give the distance between two points p and ¢

e ¢ neighborhood of a point p:

N:(p) = {q € Points | d(p,q) < €}
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Density Based Clustering

e Definition 1. (Directly density-reachable)

A point p is directly density reachable from a point ¢ wrt. ¢ and g,
if pe N.(q) and |N:(q)| > p (core point condition). O]

e Definition 2. (Density-reachable)
A point p is density reachable from a point ¢ wrt. € and p, if there
is a chain of points p1, p2,...,Pn, P1 = ¢, Pn = p such that p;1 1 is
directly density reachable from p;. []

e Definition 3. (Density-connected)
A point p is density connected to a point ¢ wrt. e and g, if there is
a point r such that both p and ¢ are density reachable from r wrt.
e and p. []

o A cluster C' wrt. ¢ and @ is a non-empty set of points such that
Vp,q € C, p is density connected to ¢ wrt. € and p.
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Density Based Clustering

e Density-reachable

e Density-connected

ICANNGA 2007 Presentation 5/22



DBSCAN'’s Results [1]
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Figure 1: Density based clustering is sensitive to minor changes in ¢
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e Scale distances proportional to its distance to its kth nearest
neighbor.

Local Scaling

e Given two points z; and z;, let Ami,xj denote the affinity
between the two points.
d2(ac7;,a:j) . .
o Ay z; = exp(———3), where o is a threshold distance
below which two points are thought to be similar.

e A local scaling parameter: o; = d(z;, 2¥) (k=7 in [2])

A~ 200 m.
o Aij — exp(—d E,fﬁ,’?))
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Input: D: Distance matrix, k: input to kNN-dist function, n:
number of dimensions, «: density threshold.

Locally Scaled Density Based Clustering

for p € Points do
p.class = UNCLASSIFIED:;

[p.e, p.neighbors] = kNNDistVal(D,p, k);
end
Points.sort(); /* Sort on ¢ */
ClusterlD = 1;
for p € Points do
if p.class == UNCLASSIFIED and localMax(p) then
ExpandCluster(p, ClusterID,n, «v);
ClusterlD = ClusterlD + 1;
end
end
Algorithm 1: LSDBC: Locally Scaled Density Based Clustering
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ExpandCluster: Expands the cluster of a given point

Input: point, ClusterlD, n, «.

point.class = ClusterlD:;
Seeds = point.neighbors; /* Remove clustered points */

while Seeds.length > 0 do ,
currentP = Seeds.first();  /* density > denSIQta}/'(core) * /
if currentP.Eps < 2%/™ x point.FEps then

Neighbors = currentP.neighbors;
for neighborP € Neighbors do
if neighborP.class == UNCLASSIFIED then
Seeds. append (neighborP);
neitghborP.class = ClusterlD;

end
end

end
Seeds.delete( currentP);
end
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ExpandCluster: Expands the cluster of a given point
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Experiments and Results

We compared our algorithm, LSDBC with:
1. Original density based clustering algorithm, DBSCAN,

2. Spectral clustering with local scaling,

3. k-means clustering.
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Figure 2: Robustness of LSDBC for different values of k& and
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Comparative Results: DBSCAN
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Figure 3: With best parameter settings: r=0.04, £=5: Only
highly dense regions are recognized.
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Comparative Results: k-means
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Figure 4: With best parameter settings: £=20: Densely
populated regions are divided.
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Comparative Results: Spectral with local scaling
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Figure 5: With best parameter settings: k=20: Densely populated

regions are divided, diversely populated regions merged.
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Comparative Results: LSDBC
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Figure 6: k=6, a=3: Background clutter is divided into 3
clusters.
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Comparative Results: LSDBC
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Figure 7: k=7, a=3: Background clutter is divided into 2
clusters.
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Comparative Results: LSDBC
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Figure 8: k=8, a=3: Background clutter is classified as a
single cluster.
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Image Segmentation Results

Segmentation of an image of a seaside, Oludeniz, Fethiye, Turkey
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Image Segmentation Results

Oludeniz (original)

LSDBC: k=12, a=5

k=10, a=6
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e Locally scaled density based clustering is introduced.

Conclusion

e Clusters are discovered via a k-NN density estimation
method and grown until the density falls below a pre-
specified ratio of the center point’s density.

e LSDBC is able to identify clusters of arbitrary shape on noisy
backgrounds that contain significant density gradients.

e The performance is demonstrated on a number of synthetic
datasets and real images for a broad range of its parameters.

e LSDBC can also be used to summarize and segment images
into meaningful regions.
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Thank you!
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