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Abstract

This paper presents approaches for building, managingeeaidating
consensus ontologies from the individual ontologies oftavaek of socially
interacting agents. Each agent has its own conceptualizati the world
within the multiagent system framework. The interactioesaeen agents
are modeled by sending queries and receiving responsesit@néssessing
each other’s performance based on the results. This modélemnus to
measure theuality of the societal beliefs in the resources which we rep-
resent as thexpertisein each domain. The dynamic nature of our system
allows us to model the emergence of consensus that mimiethetion of
language. We present an algorithm for generating the csnsesntologies
which makes use of the authoritative agent's conceptualizan a given
domain. As the expertise of agents changes after a numbateséctions,
the consensus ontology that we build based on the agentgidodl views
evolves. The resulting approach is concordant with thecjplies of emer-
gent semantics. We provide formal definitions for the problef finding
a consensus ontology in a step by step manner. We evaluaterkbensus
ontologies by using different heuristic measures of sintjledbased on the
component ontologies. Conceptual processing methodsfuergting, ma-
nipulating, and evaluating consensus ontologies are ginenexperimental
results are presented. The presented approach looks prgnaisd opens
new directions for further research.



1 Introduction

Language and consequently terminologies evolve over tifiie non-existence
of a shared global conceptualization of a domain, which wereder to when
resolving misunderstandings, requires us to develop ndsttmfind specialized,
task and context oriented solutions. In this vein, severat®l purpose ontologies
have been developed for different domains. However, adoessost of these
ontologies is not straightforward and they are propriefaenat et al., 1990].

An ontologyis a thesaurus [Scott, 1986], which answers the questiowlaht
there is” [Quine, 1986] in a domain. Ontologies present acstire over the lan-
guage we use to represent the world. Semantic Web’s dreasslsate, exploit,
and understand knowledge on the web [Berners-Lee et all]20bie existence
of a single ontology that can cover all the required concaptuformation for
reaching semantic understanding is questionable becauwgauld presume an
agreement among all ontology experts. Therefore, semagteement among
heterogeneous ontologies is not always possible. In thé extreme case, differ-
ent ontologies may not even have some shared lexicon; heakegcommuni-
cation impossible.

Another problem is that various ontologies exists for themasalomain but
it is hard to decide which one provides the best conceptatadia. The quality
of the statements can also vary within each ontology. Thesetis a need to
find models of building consensus among diverse sourcesatdrsents. In this
paper, we address the problem of building consensus onmgsleghich represent
the consensus from multiple heterogeneous ontologiesibelg to a number of
agents interacting with each other.

Motivation. Forming a consensus ontology is important for multiple oaas
First of all, it provides us with a vocabulary to which agecas refer when they
encounter misunderstandings in communication. Furthegpitrepresents a uni-
fied world view supported by the members, which facilitatesributed knowl-
edge management. In terms of language, building consemgakgies can be
regarded as an effort for reaching what Quine calls the “maofishallow analy-
sis” [Quine and Ullian, 1978], the common ground of beligfbjch are no more
particular or detailed than what is necessary for agreenent information sys-
tem that makes use of different sources of knowledge neatisaiovith the man-
agement of heterogeneous representations and conflictitepeents. The ques-
tions that need to be addressed include: (i) How can a consem#ology be
generated and conflicting conceptualizations of the woglddsolved? (ii) How
can concepts that are conceptualized or referred diffigreetrelated? (iii) How
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Figure 1. Sample ontology from the data set

can the goodness of the consensus ontology be evaluated?

The objective of finding a single, shared ontology is chajieg, not only due
to the difficulty of imposing a universal standard on ontadsg but also because
of the virtual impossibility of reaching an agreed upon aptaalization among
different sources. Stephens and Huhns [Stephens and H2001], show the dif-
ficulties in reaching an agreement even for a general donia@rfthumans” (an
example ontology from the Stephens and Huhns data is givEigin). We be-
lieve that reliably close approximations of consensuslogies can be found by
sound mathematical models and we regard our work in thistire

Technical Challenges.Our goal is to reach semantic agreement among dif-
ferent world views shared by different agents. Some teethiifficulties are as
follows:

e Conceptual mappingA concept belonging to the ontology of an agent need
not necessarily be present in other ontologies due to trerduneity of
conceptualizations. Therefore, we need to be able to fingpmgp between
conceptual elements belonging to different ontologies.

e Conflict resolution:Finding consensus among sets of statements is not easy
since they may contain conflicting elements with each otlerArrow’s
social choice impossibility theorefArrow, 1963] states, there can be no
general method for reaching a global preference order thiabvbey all of
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the preferences specified by the members of a society.

e Consensus generatioiVhat is a good way to generate a consensus ontol-
ogy, which can closely approximate a model of the consensus?

e Consensus evaluatioMeasuring the goodness of the final consensus is not
easy since each agent maintains an individual world view.

Contributions. The interactions in a social network enable us to model the
societal beliefs in theuality of resources aexpertisein a given domain. Our
approach for building the consensus ontology is based orbicing the beliefs
of experts in each domain where expertise is gained by agimuisgh social in-
teractions. The framework that we use is based on the satbictions of agents
in a referral based multiagent system. The system collailgelabuilds the con-
sensus ontology based on the evolving values for the egpdrtieach domain.
The multiagent system framework provides us with a rich farem with which
we can model the social interactions and the dynamic nafuteenvironment.

The system that we have developed has the following conimitbs. First, we
are able to model the emergence of consensual agreementg aowally inter-
acting agents. Second, we developed heuristic measuresdhrating the con-
sensus ontology based on three different levels of abgiracthird, we present a
method of concept mapping based on the conceptual strgdtutike ontologies.

Related Work. The naive approach will assign each resource (which can be
computationally represented as an RDF triplet [World WidgbMZonsortium (W3C), 2004])
from each agent an equal weight such that the statementsheitihajority of the
votes win. Thus, the triplets that are not voted enough atedvoff or silenced.
This statistical reinforcement formulation is done by $&ms and Huhns [Stephens and Huhns, 2
which is likely to result in conflicting and non realistic sdtstatements. Aberer
et. al. [Aberer et al., 2003] present a framework for query transition and
a method for detecting semantic agreements in which peansform queries
based on their local schema and their already existing mgpfinctions be-
tween schemas. The approach is named semantic gossipingrgé&mh seman-
tics [Aberer et al., 2004] is a recent term being used for thergent phenomena
regarding the semantic interoperability. The system wes ltlevelopedis com-
plying with all the principles of emergent semantics [Alvagtal., 2004] since:

(1) the consensus ontology and each agent’s own beliefs\vandazal ontology
evolve via a process of forming consensus and a semantichakel mechanism
that happens among agents where agreement is effected fuahy, strength,



and the trustworthiness of the statements and agents;d@;3ensus ontologies
emerge from the local interactions and the negotiationd heiong agents; (4)
the consensus ontology is a dynamic and self-referentjaitopmation of the
consensus and evolves over time as the agents interactacithother and change
their conversational context; (5) the consensus ontologding is effected by lo-
cal interactions and aagreements which decentralizeotiteot to the interacting
agents where autonomy is preserved; (6) it can be a modekfrtp-peer data
management and result with more accurate global semamgeagnts.
Campbell and Shapiro [Campell and Shapiro, 1998] attenfptdalgorithms
for determining the meanings of unfamiliar words by askingstions. Their ap-
proach resolves terminological mismatches with an ontoldgnediator. Match-
making is a process used in semantic web applications fanfirappropriate ser-
vices for given queries using description logics reasojieend Horrocks, 2003].
Building consensus ontologies facilitates knowledgeisigaaind has applications
in service composition [Williams et al., 2003]. According the categorization
and the organization of the material presented in statesodithin ontology align-
ment [Euzenat et al., 2004], we are using both local and ¢jlokéhods for align-
ing concepts and generating consensus ontologies. Therfetaods that are
employed in our work falls under the heuristic techniques tise terminological
and structural techniques. The global methods that we gniiplolve compound
and global similarity computations, learning methods ttzat fall under the cate-
gory of semantic gossiping, and alignment extraction teghes via thresholding.
Noy [Noy, 2004] discusses techniques for finding corresponds between
ontologies. For establishing the smallest set of conceptset used in agent
communication, previous work assumes that agents share summal com-
mon ground which can be used to learn new concepts [van CEggelal., 2004].
Algebraic methods for merging ontologies when mappingsveen ontologies
are known are presented by Mitra and Wiederhold [WiederhottiMitra, 2001].
Formal concept analysis was used for merging ontologiedanmg instances
and features of concepts defined in individual ontologiésitine and Maedche, 2001].
Sections.The next section investigates representations for theapézability
of semantic information and provides formal definitionstoe problem of find-
ing a consensus ontology in a step by step manner. Sect.c8lirtes the formal
presentation of the problem of building consensus. We dissaveral abstraction
levels for comparing ontologies such as lexical, concdptainformation re-
trieval. We also discuss methods for mapping concepts. 8eantroduces social
networks of agents and how they communicate and collaberiéteeach other
from the perspective of building consensus. In Sect. 5, veegnt our methods
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for building consensus ontologies and in Sect. 6, we presgmgxperiments and
results. The last two sections present the future work aedahnclusion.

2 Semantic Information and Consensus Ontologies

There has been extensive work on representing and emplmforgnation about
semantics. In this section we discuss efforts that shamsedlelations with our
interpretation. We gain a broader perspective by investigghilosophical ap-
proaches and mathematical representations for semafbicniation. We also
provide formal definitions for the problem of finding a conses ontology in a
step by step manner.

2.1 Resolving Misunderstandings at the Sign Level

Charles Peirce’s semiotics acts as a model to derive a matieairepresentation
for the transmission of semantic information in a scendonee&to the one used in
agent communication. In simple terms, whers the interpretant$ is the sign,
and O is the object,/ interpretsS as a sign ofO [Hookway, 1992]. This is a
triadic mathematical representation for shared semaetickiding the instances
of objects. Since the context is a necessary and essentiadfgaanslation and
understanding, we assume that it is stored or derived by

Another way to represent meaning is through an ostensiwppetive via us-
ing instances or examples. Quine asserts that sententethe/game meaning can
be identified by specifying the circumstances under whiahgentences have the
same meaning [Quine, 1995]. An ostensive mathematical hiedeoncepts and
contexts exists through formal concept analysis (FCA) f&aand Wille, 1999].
The universe is viewed in a formal context which has the cphes its ba-
sic unit having instances and attributes as its buildinghkdo FCA represents
a context as a triplé £, A, F') where E and A are sets of examples (extents)
and attributes (intents) andl : £ — A is a mapping function. All attributes
thought with a concept is called iiatensionand all instances for which the
concept can be predicated is calledaigensiorfStumme, 2002]. A concept in
the context(E, A, F) is an (extentintent) pair whereextentC E, intent C A,
F(exteny = intent and F~!(intent) = extent Thus, F~!(F(exten}) = extent
andF'(F~!(intent)) = intent

In semiotics, context takes part in the translation of signsbjects, whereas
in FCA, context is formed through an ostensive and compraiemefinition by



the instances and the attributes of objects. Ostensiveoiescan be derived by
combining these two ideas. That is, we can define objectstivéin extents and
intents as it is done in FCA. Then, the interpretant woul@driifie context as it is
done by FCA.

Triadic world refers to the Peircean interpretation of the world anddtyeadic
world refers to a world when the contextual information is immiatesr accepted
as common sense. Semantic information about an object iedsts a tuple
(S,0,1) in the triadic world. The shift from the dyadic to the triadiorld re-
quire us to define the notion of context either via ostensgihia done in FCA or
via other definitions such as the set of queries posed bettheestommunicating
pair, forming the conversational context.

Given two interpretants; and [}, trying to communicate semantic informa-
tion about two different object9; andO; signified byS; andS; correspondingly,
the type of misunderstandings that might be encounteredeaet the communi-
cating pair can be classified as follows:

1. Absence of semantic information: An equivalent semantic information
might not be present. An interpretant Bf30’s will not be able to under-
stand “neutrinos” as it will be untranslatable [Quine, 1P98t the listening
pair might be able to interpret it.

2. Syntactic misunderstandings: Two equivalent objects might have differ-
ent signs; thus the signs asgnonymigle.g. Morning star and Evening
star). Examples include the use of different languages (ielge vs. love),
spelling variations within languages (e.g. colour vs. cplmisspellings in
entry, mishandling of compound names (e.g. commonsenseovsmon-
sense), varying representational constraints for the sameept (e.g. local
phone number representation vs. national), and synonymity

3. Conceptual misunderstandings:Two syntactically equivalent signs might
signify different objects, that is conceptual implicasothus they araomonymic
Examples include words having different senses and conakjpiterpreta-
tions.

4. Pragmatic misunderstandings: The context in which an object is inter-
preted changes its semantics. This change can move twotslgeman-
tic information closer or distant. For instance, “episodes the same
sense [Fellbaum, 1998] with “part” when used in the contéx play but
in the context of medicine, it refers to the occurrence ofllaess.
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Even if none of these cases of misunderstandings exisslataom might not
be known due to Quine’s indeterminacy of translation thggisne, 1970], which
states that because of freedom of choice, the exact traorshatght not be deter-
mined from possibilities that arise from observations. Whiewed as a learning
problem, there may exist various functions that fit the olesegtdata; yet it is hard
to determine the exactly the same intended function amoagalst amount of
functions that are correct.

The additional advantage of a multiagent system is thetglofiasking other
agents when resolving misunderstandings. The process mhwie use other
agents’ resources to find semantic mappings between a dothegpve do not
understand with a concept that we do may be called as formitggmantic
bridge” [Stephens and Huhns, 2001]. By using the bridgingnég resources,
we can establish a link between a previously unknown objeahtalready known
object that was in our agent’s resources.

2.2 The Problem of Finding a Consensus Ontology

In this section, we present a general mathematical repiasam for ontologies
and the consensus ontology and provide an initial formaredif the problem of
finding a consensus ontology. Formal definitions are pralateneeded in a top-
down fashion.

e LetC represent a set of concepts and C C x C be the ‘subC assOF”
relation, which relates two concepts having the subclasslafion defining
a partial order over the set of concepts.

e AstatementSin (C, <¢) is a3-tuple (cs, <c,c,) Wherecs, ¢, € C repre-
sent the subject and the object respectively suchdhat: c,.

e Two statementsS; = (cs,, <c,¢,;) and S; = (c,;, <c, o, ), conflict with
each other whem,, is equivalent toc,, and c,; is equivalent toc,,.

e A set of statements, is consistent when it is conflict-free.

e Anontology is &-tuple (C, <) which represents a consistent set of state-
ments defined ovet. Thus,O = {S;,...,S,}.

e Let O" be the ontology that represents the intersection of a gie¢ofs
ontologies. Then,

n

o = ﬂOi = <ﬁci7 <n),
i=1

i=1
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where O; € O foralli, 1 < i < n and <, defines an ordering consistent
with all of the given set of orderingg2” is defined similarly.

o Let OF represent the set of all possible statements that are temntsigith
a given ontology®; and letO* = |J;_, O;.

e A consensus ontology(¢, is an ontology which represents the consensus
of a given set of ontologies.

e Given a set of ontologies), let Oy represent the consensus ontology.
Then,
0" COs COYCO.

e A consensus ontologyq, is completewith respect to an ontology);
when all the statements @, are in Oq. Thus, O; C O.

e A consensus ontology., is consistentwith respect to an ontology);
when none of the statements @; conflict with O.

e A consensus ontology &rongwhen it is both complete and consistent with
respect to an ontology.

Definition 2.1 (Strong Consensu}
Given a set of ontologies), find an ontologyO. such thatO. is strong with
respect to all ontologies i@. O

The requirements for consistency and completeness areastige hard to
satisfy. Each ontology might be consistent in itself butiit iikely to be incon-
sistent with others. Thus, there may be conflicting statesneverall and which
one to choose is not easy to decide. Even if the statement®acenflicting with
each other, the union might not represent a consensus shegery statement is
presentin all ontologies and therefore they might not b@stted by all. In a sim-
ilar manner, although defining a consensus as the inteoseatistatements, the
statements that are shared by all ontologies, will reptes@onsensus, it might
lead to an empty set.

Let HeuristicValuebe a function which returns a value for the goodness of
a consensus ontology.

Definition 2.2 (Learned Consensu}
Find an ontologyO. such thatHeuristicValueis maximized. OJ
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Oc =N, O; (Initialization)
s=UL, 0 — Oc
while S # () do
St at ement = FindBestStatemef®@, S, Q)

if St at enment then
S=S — Statenent ;

Oc=0¢ U St at enment ;
end
end

returnQO¢) ;
Algorithm 1: Inductive Algorithm for Learning Consensus

Consensus learning may have two differéheuristicValue function defini-
tions among others:

e Let HeuristicValuebe a function wherdHeuristicValue: Oc x O — [0, 1].
Find O¢ such thatHeuristicValuéO¢, O) is maximal.

e Let HeuristicValuebe a function wherédeuristicValue: O xO* — [0, 1].
Find O¢ such thatHeuristicValu¢O., O*) is maximal.

Algorithm 1 presents a top-down, inductive learning applhoto building a
consensus ontology. A consensus ontology is reached bysaéaearch through
the space of possible formal statement configurations. &t step, the current
best statement which has the highégturisticvValu¢O., Q) is chosen by the
FindBestStatemerfunction and added to the consensus ontology. A number of
heuristic measures that can be used for creatidiguristicValuefunction is given
in Table 1.

3 Consensus Ontology Generation, Management, and

Evaluation
This section presents our formal introduction and framéworthe problem of
finding a consensus ontology among a given set of ontolodilss, conceptual

processing methods for building, managing, and evaluatimgensus ontologies
are given.
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3.1 Problem Formulation

We define an ontology as a 2-tupl€é, <.) whereC represents the set of con-
cepts and<c C C x C is the "subC assO ” relation, which relates two con-
cepts having the subclass of relatiafl, <. C5 denotes that”; is a subconcept
of C5 under the conceptual hierarchy ef.. A multiagent system (MAS) is a set
of agents,A = {A,,..., A,}, where agents interact by asking each other ques-
tions and evaluating the answers they receive. Each agerttas an ontology
O, = (C;, <¢;) and a lexicon,C;, which defines the set of allowable terms.

We useO" to denote the ontology which represents the intersectiargofen
set of ontologies,0, where O; € O and < defines an ordering consistent
with all of the given set of orderings (equation 14, see Tadbleln Table 1, we
define a number of heuristics for evaluating ontologies #&dr telements. We
base some of our heuristics on Maedche’s [Maedche, 2008¢septation. We
compare ontologies at three different levels of abstractlexical (equations 1,
2, and 3), conceptual (equations 4, 5, 6, and 7), and baseldeoméasures of
information retrieval (equations 8, 9, 10, 11, 12, and 13).

We compare two ontologies tie lexical levelby averaging over the syntac-
tic similarities of their lexicon (equation 2). The stringtohing heuristic that we
use, SM, is defined based on the edit distaedgequation 1). The.| operator
used in the equations corresponds to the length of the leteioa or the size of
the lexicon depending on the context. The similarity of teedon of the con-
sensus ontology to the lexicons of component ontolodiesan be computed by
averaging over all component ontologies (equation 3). SBM is asymmetric,
we take the arithmetic mean.

At the conceptual levelwe use the similarity between the conceptual tax-
onomies of two given ontologies. The conceptual simildsgyween two concepts
C; and C; is approximated by calculating the similarity between tlagicestor
sets (AS) (equation 4). Based on AS, we calculate the taxansimilarity (TS)
between two conceptual hierarchieg, of O; and <¢, of O; for a given lex-
ical term (equation 5). When there exists a lexical entryhat is in £; but not
in £;, then we search for the maximum overlap among all thosedégiutries of
L; (TS,). We define the average taxonomic similarity between twologies, TS
(equation 6), and compute the average similarity of thentaroy of the consen-
sus ontology compared to the taxonomies of component ayieddy averaging
over all component ontologies (equation 7).

We can view building the consensus ontology task within tapse of infor-
mation retrieval, where there exists a set of target elesntrat we are trying to
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SM(L;, L;) = max(o MingLilIL,)) - €d(L, L) ) (1)

MIN(|L; ], ;)
SM(L1, L£2) = 177 Yoper, M@K e, SM(Li, Lj) (2)
SM(Le, L) = S o, ML) ? Mizi.Lo) 3)
ASCj, <) ={C,€C|C; <¢c C; VvV C;=C5} 4)
meoo) - {RECO Tl ®
TS0:,05) = 1771 Xper, TSL, 03, 0) (6)
TS((’) 0) = |®| oo TS0.0) +TSO 0) @)
precisiof O, O¢) = |elemen;|5e9n:]we(ar]lte$r9nentsoc (8)
recall(©, O¢) = |eleme2}gomréﬁ{§9r:ent®c 9)

2 xrecallo,0.) x precisiono,o.)
FMeasur¢O, Oc) = recallo,0c) + precisiono,oc) (10)

Precision(Oc, 0) = ; X o,0 Precision0;, Oc) (11)
RecallOc, 0) = @ 2,0 recall(0;, Oc) (12)
FMeasur¢Oc., 0) = 7 X0, co FMeasur¢0;, Oc)  (13)

O" =<, Ci, <q> (14)

Table 1: Heuristic measures for evaluating ontologies ani elements
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retrieve, the consensus ontology, and a larger set that a@setfrom, the set of
component ontologies. Equations 8-13 give the definitiamsolir information
retrieval measures where the functielement80) returns the set of class lexical
terms in the ontology?D. Precision corresponds to the proportion of selected lex-
ical terms that the system got right (equation 8) whereaallrearresponds to the
proportion of the lexical terms that the system selecteddegn 9). Equations
11, 12, and 13 calculate the averages for precision, rearadl F-Measure values
correspondingly. The closer the values are to 1, the better.

3.2 Mapping Concepts

This section presents our method of mapping concepts fréfereint ontologies.
Given two ontologiesO; and O; with lexicons £; and £;, let L, € £; and
L; € £;. A mappingfunction, m, betweenL; € £; and L; € L; is a func-
tion whose domain isC; of O; and whose range i€; of O;. Then, under
the mappingm, we can useL; whenever we usd,;. Our method for concept
mapping is given in Algorithm 2. The functio®@CM returns the level obrdered
conceptual matchetween two concepts corresponding to the lexical entnes i
their respective ontologies. This function is based on &x®rnomic similarity
that we have definedOCM is defined since subgraph isomorphism is known to
be NP-complete [Garey and Johnson, 1979]. We have set tbhtbid levels for
the concept mapping &5, 0.3, and0.5 for a;, as, and as correspondingly. Our
experiments verify that this selection gives us good resuti(L;) = L; states
that concept topic names; and L; match with the mapping functiom.

Table 2 lists definitions for concept matching. We adopt treghmmatical
representation used in [Maedche, 2002] for formal ont@sgi he relationF C
Le x C denotegseferencedor concepts. Let forl, € Le:

F(L)={CecC|(L,C)eFlandforF(C)={L < Lc|(L,C) e F}.

We define abstractions for upwards cotophC( equation 15), lexical concept
match CCM, equation 16), concept matc&N§, equation 17), ordered upwards
cotopy OQUC, equation 18), ordering matc®M, equation 19), and ordered con-
cept match@QCM, equation 20). The context of a given concept may also bedbase
on its downward cotopy; but we do not consider the downwatdmg since we
cannot get a total ordering between the elements of the ISEM ignores the
depth of the hierarchy considered in different ontologigmghly specialized on-
tologies might use various levels when representing thedaenarchical compo-
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UC(Cy, <¢) ={C; €C| Cs <c C;) v C; = C;} (15)
LCM(L@,OZ',LJ‘,OJ') = CM(f(Lz)a(/)wf(LJ)?O]) (16)

7 (UC©Ci<c,) nF ' (UC(©G,<c)))l
17 UC(Ci,<c,) u A M UCC <))

CM(CZ',OZ',CJ',OJ') - (17)

OUC(CZ, <C) = {CJ eC | C; <c CJ) V(= Cj}<<c (18)

OM(Ag,, B<y) = S0 a; <a a1 & m(a;) <p m(a;i1) (19)

_ OM©OUC(c;,<¢,), OUC(C;,<c)))
OCM(C;, 01, C;, O;) = min(|OUC(C;, <)), IOUC(C; <)) (20)

Table 2: Methods for mapping concepts

sition. For instance, given two ontologie&’;, <¢,) and (C;, <c,), such that:
{CZ <c; B7 B <c; A} - < and

{Cj <c; Y, Y <c; B, B <c; X, X <c; A} - <¢;»

then the concept match betweéh and C; becomes:CM(C;, O;,C;, O;) = %
This discrepancy might increase when comparing two cosdepin ontologies
belonging to two different agents with different experiseels.

One way to overcome this is to define similarity based on thept@ance of
the hierarchical order in which concepts are positionechattvo hierarchies,
which, in a way, provides us a scaling of the similarity measiBased on such
a measure(’; and C; should have a perfect match. Thus, we define an ordered
concept set as follows: andered sets ann-tuple, denoted by{a;, as, . . ., a, }<,
such that there exists a total ordet, defined on the elements of the set. Based
on ordered sets, we can define a new type of mapping, that wenocalotone

mapping

Definition 3.1 (Monotone mapping

A mappingm : £, — L;, whose domain is the lexicon d;, = (C;, <¢,)
and range is the lexicon aD; = (C;, <¢,), is monotone or order-preserving, if
for L;, L; € Li, Fi(Ls) <c, Fi(L;) implies F;(m(L;)) <¢, F;(m(L;)), where
m(L;), m(L;) € L;. O
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Given: Two lexical entriesL; and L; belonging to ontologie®); and O;
respectively, find if their concepts match using the thresho,, a», and as.
if SM(LZ, LJ) X then

if OCM(LZ, O;, Lj, OJ> > ap then
else |fOCM(L2, O;, Lj, OJ) > ag then
else

m(L;) # L,

Algorithm 2 : Concept mapping

Ordered concept matclOCM) is based on order-preserving mappings. .
term in the definition ofOUC (equation 18) represents the total order based on
the taxonomic hierarchy of concepts. Various techniquesdpresenting order
in RDF are presented by Melnik and Decker [Melnik and Deck@@l]. The
overlap between two ordered sets is given by the orderinghm@M), where
Ac, = {ar,a9,...,a,}<,, B<, = {b1,b2,....b,}<,, and m is a mapping
whose domain isA¢, and range isB¢,. Simplest such mapping is the lexi-
cographic equivalence function, which can be definedmas= {(z,y) | =z €
Ac,, y € Bg,, Lexz) = Lex(y)} where Lex() is a function from a set el-
ement to a lexical entity which signify the element. The patimparison tech-
nique [Euzenat et al., 2004] is similar in manner since ib @lsmpares the labels
of objects as well as the sequence of labels of related estiti

4 Social Networks

A referral system is a multi-agent system in which agentgecate by using
referrals where a referral corresponds to a link to anotigentastored by the
models of agents. A social network refers to a set of agenitshvaocially interact
with each other by using queries and answers [Yolum and SR@DB]. Agents
in our system have a number of policies to learn models ofr@bents that they
interact with. These models store information about thebeetise, the projected
ability to produce correct answers, and their sociabitityy projected ability to
produce correct referrals.

The system differentiates between each agent’s interast&xpertise since
these two aspects do not necessarily overlap. This enableswodel the change
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in each agent’s expertise as they develop new interestsatataitheir expertise
correspondingly. Each agent poses a query based on its denesits. These
gueries are first sent to potentially expert agents in thghteirhood of an agent.
Agents receiving a query may answer the query based on thfidence in their
answer or refer to another agent that is more appropriate.réteived answers
are used for evaluating the expertise of the answering aésmtepresent queries,
answers, and interests as setgtefm expertiseValue tuples when we calculate
the similarities between them. Query terms selected forobaet of the concepts
chosen from the local ontology of a given agent. The set ofigei@osed between
any two communicating pair of agents forms the conversationntext.

Definition 4.1 (Similarity )
Given two sets of term-value mappings, a quérand expertiser, the similarity
of @) to F is found as follows:

Qop= 28 X5
VR i 4
wheren is the number of terms in the query, € @ isatermin@, ande; € E
isatermink such thatm(g;) = e;. OJ

Definition 4.1 is similar to the cosine similarity measurattiveighs exper-
tise vectors with higher magnitude more. Each agent has perise level in a
concept term from its ontology, defined in the rangel]. Expertise levels are
learned dynamically by the social network through quergvaar interactions and
assessments of the answers. As the interests of agentseghla@gontents of the
guestions asked change and progressively, this causegdluéi@n of the exper-
tise levels and the consensual structure. Thus, the systehave developed can
be referred to as a dynamically evolving semantic systeracan social interac-
tions.

Agent Communication. When two agents,4; and A;, communicate, they
may experience misunderstandings based on the discregandheir intended
meanings. Given a lexical termh; from O; being used byA4; to communicate
with A;, we might observe thal; is not present inO;. In that case, we need
to find the best matching concept fro@,. In another case, two lexical ternis
and L, can be syntactically equivalent but conceptually différ&ide accept that
two agents can reach a shared understanding when the léxioe they use to
communicate share the same meaning where the meaning i taske terms
themselves and their corresponding conceptual structWesesolve these issues
by using our concept mapping algorithm (Algorithm 2).
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Given: A set of agentsA, sharing a set of ontologie), find the consensus

ontology, O¢, represented by a consistent set of statements such that it
represents a consensus for the MAS.

OC’ = ﬂ?:l OAL'
while newLeafSetSiz¢ LeafSetSizdo
LeafSet= getLeavef))
LeafSetSize- |LeafSeft
for Csubj € LeafSetdo
Aexpert= getDomainExpe(O, Csubj>
expansionSet getDomainConceptuaIizati«@ﬁ?ﬂexper,E Csubj)

for Cobj € expansionSeato
C()bj = getBestMatchingConce(i?, C'p;)
if Cé)bj then
add(O¢, CSUbj? Cé)bj)
else
add(O¢, CSUbj? Cobj)
end
newlLeafSet getLeaveQ)D.)
newlLeafSetSize [newLeafSet
end
end

D

Algorithm 3: Building consensus based on domain expertise

5 Building Consensus Based on Domain Expertise

In this section, we present a consensus building algoritaset on the observa-

tion that an agent who is expert in a domain will likely be atdeeonceptualize

the underlying structure better than others.

In Algorithm 3, we first initialize the consensus ontologythe intersection
of the component ontologies. This forms the upper ontologgehaccepted by
all agents in the MAS. For each concept in the leaf set, thkieiset of concepts
that are considered as leaves when the ontology is seen as, avie determine
the expert agent in that domain. Given the set of agent agigddrom the MAS

and a concept, thgetDomainExperfunction returns the agentdexper Which
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is the expert in the domain corresponding to the concepted®as Aexperts
conceptualization of the domain, we find an expansionegtansionSetwhich
contains the set of concepts that are subclasses of the nlof@i each concept
Cobj in the set, we try to find a matching concept from the compoaettlogies
which has a higher expertise level. For a given set of compiometologies and
a concept, thegetBestMatchingConceptinction returns the best matching con-
cept, Cé)bj' from all ontology models which has the best expertise lgveater

than the expertise level aﬁobj- If the expertise level OCéij is not greater than
the expertise level OCobj' then this function returns the empty set.

5.1 Randomized Induction Algorithm for Building Consensus

In this section, we present a method based on heuristictsaatice space of RDF
statement triples for finding the consensus ontology ad lgeeement among
multiple component ontologies. We seek to find the best ecmuseontology,
O¢, by adding statements to the initial consensus, which i®séX". To prevent
local minima, we use an approach based on randomized dgwiin which we
can randomize the statement selection up to a level so thatenadlowed to make
bad moves.

Our general approach to consensus building is based on atiedubnneal-
ing [Russell and Norvig, 1995]. In the inner loop, we pick adam statement
and check to see if it improves the heuristic value. If it Jeesadd the statement
to our current consensus ontology. Otherwise, with sombalitity, p = e,
we add the statemenip decreases exponentially with the badness of the move,
AE. Also, the parametef’ determines the likelihood of us allowing bad moves.
scheduledetermines the value @f based on a function of the number of cycles
that has already been completed.

In Algorithm 4, the HeuristicValuefunction is any heuristic measure that es-
timates the level of overlap based on the given componentagies. We choose

to use the taxonomic overlap measufi&), which corresponds to the taxonomic
overlap among its arguments. This is due to our data set witntains mostly
taxonomic relations and due to the fact that taxonomicimatare more impor-
tant than non-taxonomic one®RandomNeighboringStatemé@t, S) is a func-
tion which returns a randomly chosen neighboring statemépt<c S, of the
current consensus ontology such tl@t U Sy is consistent. By neighboring
statements to an ontology, we mean the set of statementsahdie added to
extend a given ontology such that the consistency is prederv
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Given: A set of ontologies(), find the consensus ontology
represented by a consistent set of statemafts, such that it has
maximum HeuristicValue.

Oc =i, O; (Initialization)
S=U;_; Or — Oc¢
t = 0; (Temperature)
e = 0; (Energy)
fort «— 1tooo do

T « schedulé]

if 7= 0then

returnO¢
S, = RandomNeighboringStatemé@t:, S)

AFE = HeuristicValu¢Oq U S, ©) — HeuristicValu¢O¢, O)

if AE > 0then
Oc = Oc U S,
else

Oc = Oc U S, with probabilitye

end
Algorithm 4 Building consensus by simulated annealing

6 Experiments and Results

We have experimented with a number of agents ranging fram1000, having
various numbers of differing ontologies ranging fr@no 53. The expertise lev-
els of agents are initialized to a measure of the depth of timeash within each
agent’s ontology. The results of our experiments are gimefable 3. By mak-
ing use of the criterion we introduced in [Bigici, 2006bfkin [Bigici, 2006a], we
evaluate a consensus ontology based on how well it agrelesheitomponent on-
tologies. The evolving nature of the consensus ontologlyishgenerated among
500 agents using3 different ontologies can be seen in Figs. 3, 4, and 5, which
are ordered according to their F-Measure performancesh tiguare represents
the consensus ontology that is generated at some stageeifdhsion.

In our experiments, we attempted to address the variandeipdgrformance
of the consensus ontology with respect to the number of agewlved and the
number of differing ontologies used. We present our resaolffable 3 where
AvgSynSinand AvgTaxSyntorresponds to average syntactic and taxonomic sim-
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Number of agents
Number of ontologies 5 | 10 | 25 | 50 | 100 | 250 | 500 | 1000
AvgSynSim 0.3856 0.3856 | 0.3856 | 0.3856 | 0.3856 | 0.3856
2 AvgTaxSim 0.2890 0.2890 | 0.2890 | 0.2890 | 0.2890 | 0.2890
FMeasure 0.5417 0.5417 | 0.5417 | 0.5417 | 0.5417 | 0.5417
AvgSynSim 0.1258 0.1249 | 0.1231 | 0.1267 | 0.1267 | 0.1240
5  AvgTaxSim 0.2011 0.1997 | 0.1970 | 0.2025 | 0.2025 | 0.1984
FMeasure 0.2433 0.2472 | 0.2550 | 0.2393 | 0.2393 | 0.2511
AvgSynSim 0.0710 0.0783 | 0.0783 | 0.0759 | 0.0979 | 0.0963
10 AvgTaxSim 0.1666 0.1678 | 0.1678 | 0.1674 | 0.1962 | 0.1777
FMeasure 0.2234 0.1893 | 0.1893 | 0.2006 | 0.1993 | 0.2384
AvgSynSim 0.0266 | 0.0264 | 0.0265 | 0.0266 | 0.0261 | 0.0262
25 AvgTaxSim 0.1278 [ 0.1289 | 0.1283 | 0.1278 | 0.1305 | 0.1300
FMeasure 0.1239 | 0.103 | 0.1135 | 0.1239 | 0.0716 | 0.0821
AvgSynSim 0.0162 | 0.0141 | 0.0131 | 0.0144 | 0.0141
53 AvgTaxSim 0.1181 | 0.1188 | 0.1164 | 0.1281 | 0.1188
FMeasure 0.0794 | 0.0884 | 0.0938 | 0.0831 | 0.0884

Table 3: Evaluation results for the consensus built

[T Trmesue
E. _____ - Syntactic Similarity
: I =<croric Similarty

Measure value

500

10 20 30 40 B0 000
Mumber of Cntologies MNumber of Agents

Figure 2: Results plotted in 3D
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ilarity scores correspondingly. The resulting graph whes results are plotted
in 3D is given in Fig. 2. The results show that the performanceeases some
as we decrease the number of agents collaborating towagdsotisensus and it
increases greatly as we decrease the number of differesliogigs being used by
the agents.

We have also experimented with the threshold values usedeirsimilarity
measures to find the best setting for building consensusauitisystem. Under
the setting withb0 agents sharing different ontologies, we have found that the
« values that are used in our concept mapping algorithm (Atlgor2) with val-
ues 0f0.6, 0.3, and0.5 for a4, a9, and as correspondingly gave the best results
for the syntactic and taxonomic match measures. F-Measumaximized when
ay, oo, and az are set t0).5, 0.2, and0.3. We chose to useé.6, 0.3, and0.5
for the presented experiments which gave good results ihvAfeconcept map-
ping algorithms need to balance the weights given for thedex which may be
regarded as the pointers to the real concepts, and the wajgien for the con-
ceptual structures themselves. Thevalues represent that if there exists a high
lexical match value for a lexical term, then we also checkaftevel of structural
match via ordered conceptual match. But if the lexical magchot at a satis-
factory level, then we further require a higher level stouat match that could
indicate a conceptual mapping possibility.

One research question that needs to be further answered exigtence of
plateaus where the consensus ontology might reach aftex 8ora and whether
there are some phenomena that leads to such plateaus. Wedtauet exper-
imented with techniques that can help us identify such regibthey do exist.
Consensus plateaus can help us shed new light on the vat@mmmena that
appear in emergent semantics, their mechanisms, and ¢teionships.

7 Future Work

In the current version of the system, only the consensudamyas allowed to
evolve whereas individual agents’ ontologies remain unged. Allowing each
agent to change its ontology based on queries might be ar ladtitenative for
simulations.

The final consensus ontology that is built can be refined bassdme heuris-
tics. One such heuristic is thmherence continuumlf there is alternation of
the expert agent chosen for domains that are consecutivé¢yed based on the
subclass relation, such as th, C C; C (3, then we may choose to refine the
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consensus ontology so that all the domains are chosen fi@aitdrnating agent’s
recommendation. For example, if; is the expert for domaing’; and C; and
A, is the expert forC,, then to preserve the coherence continuum we can discard
the conceptualization ofi,, which can be considered as an interposer.

Another refinement can be done in choosing good domain exp@e can
choose to store domain expert histories which can later bé tesselect experts
from when the expertise of the best agent in the current domsanot as good
as the agents who are experts in the upper levels of the caunsentology. This
retrospective approach assumes that an expert agent clovseigiven concept
term is likely to be good in its subconcepts. However, in tbal world, this
assumption can easily be challenged. For instance, antexpprogramming
need not necessarily be goodltSP programming itself.

Also, the investigation regarding the existence of consepdateaus appears
promising and postures like a fruitful avenue for the camdimce of this research.

8 Conclusion

We have studied the generation, management, and evaludtimonsensus on-
tologies among agents having differing ontologies witla tultiagent system
framework. The system that we have developed has the capalbinodeling the
emergence of consensual agreements among socially itmegragents. We have
also developed measures for evaluating the consensusgytbased on three
different levels of abstraction and heuristic methods fmngeptual processing.
Interactions between agents based on queries and thegsas=ets allow us to
model the quality of resources.

We have provided formal definitions for the problem of findengonsensus
ontology in a step by step manner. Conceptual processingaaetor building,
managing, and evaluating consensus ontologies are giwexgrerimental re-
sults are presented. We have presented a method of concpptngdased on
the conceptual structures in the ontologies. An algoritbngenerating the con-
sensus ontologies using the authoritative agent’s conaépation is presented
and another method is developed based on heuristic seathh space of RDF
statement triples for finding the consensus ontology ad lgeeement among
multiple component ontologies

The system that we have developed can handle arbitraryagimsl having
both taxonomic and non-taxonomic relations. The dynamiergence of con-
sensus mimics the evolution of language. The resultingesyshat we have de-
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veloped is concordant with the principles of emergent seiw&anThe presented
approach looks promising and opens new directions for éuntesearch includ-
ing the investigation of consensus plateaus in systemsthéltharacteristics of
emergent semantics. We expect that this research will lelmderstand and for-
malize the tradeoffs between approaches to building causewhich can later
determine inference mechanisms that can be in place.
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Figure 3. Consensus ontology generated at some stage ofchgien.
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Figure 4: Consensus ontology generated at another stabe e¥olution.
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