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Abstract

This paper presents approaches for building, managing, andevaluating
consensus ontologies from the individual ontologies of a network of socially
interacting agents. Each agent has its own conceptualization of the world
within the multiagent system framework. The interactions between agents
are modeled by sending queries and receiving responses and later assessing
each other’s performance based on the results. This model enables us to
measure thequality of the societal beliefs in the resources which we rep-
resent as theexpertisein each domain. The dynamic nature of our system
allows us to model the emergence of consensus that mimics theevolution of
language. We present an algorithm for generating the consensus ontologies
which makes use of the authoritative agent’s conceptualization in a given
domain. As the expertise of agents changes after a number of interactions,
the consensus ontology that we build based on the agents’ individual views
evolves. The resulting approach is concordant with the principles of emer-
gent semantics. We provide formal definitions for the problem of finding
a consensus ontology in a step by step manner. We evaluate theconsensus
ontologies by using different heuristic measures of similarity based on the
component ontologies. Conceptual processing methods for generating, ma-
nipulating, and evaluating consensus ontologies are givenand experimental
results are presented. The presented approach looks promising and opens
new directions for further research.



1 Introduction

Language and consequently terminologies evolve over time.The non-existence
of a shared global conceptualization of a domain, which we can refer to when
resolving misunderstandings, requires us to develop methods to find specialized,
task and context oriented solutions. In this vein, several special purpose ontologies
have been developed for different domains. However, accessto most of these
ontologies is not straightforward and they are proprietary[Lenat et al., 1990].

An ontologyis a thesaurus [Scott, 1986], which answers the question of “what
there is” [Quine, 1986] in a domain. Ontologies present a structure over the lan-
guage we use to represent the world. Semantic Web’s dream is to share, exploit,
and understand knowledge on the web [Berners-Lee et al., 2001]. The existence
of a single ontology that can cover all the required conceptual information for
reaching semantic understanding is questionable because it would presume an
agreement among all ontology experts. Therefore, semanticagreement among
heterogeneous ontologies is not always possible. In the most extreme case, differ-
ent ontologies may not even have some shared lexicon; hence making communi-
cation impossible.

Another problem is that various ontologies exists for the same domain but
it is hard to decide which one provides the best conceptualization. The quality
of the statements can also vary within each ontology. Thus, there is a need to
find models of building consensus among diverse sources of statements. In this
paper, we address the problem of building consensus ontologies which represent
the consensus from multiple heterogeneous ontologies belonging to a number of
agents interacting with each other.

Motivation. Forming a consensus ontology is important for multiple reasons.
First of all, it provides us with a vocabulary to which agentscan refer when they
encounter misunderstandings in communication. Furthermore, it represents a uni-
fied world view supported by the members, which facilitates distributed knowl-
edge management. In terms of language, building consensus ontologies can be
regarded as an effort for reaching what Quine calls the “maxim of shallow analy-
sis” [Quine and Ullian, 1978], the common ground of beliefs,which are no more
particular or detailed than what is necessary for agreement. Any information sys-
tem that makes use of different sources of knowledge needs todeal with the man-
agement of heterogeneous representations and conflicting statements. The ques-
tions that need to be addressed include: (i) How can a consensus ontology be
generated and conflicting conceptualizations of the world be resolved? (ii) How
can concepts that are conceptualized or referred differently be related? (iii) How
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Figure 1: Sample ontology from the data set

can the goodness of the consensus ontology be evaluated?
The objective of finding a single, shared ontology is challenging, not only due

to the difficulty of imposing a universal standard on ontologies, but also because
of the virtual impossibility of reaching an agreed upon conceptualization among
different sources. Stephens and Huhns [Stephens and Huhns,2001] show the dif-
ficulties in reaching an agreement even for a general domain like “humans” (an
example ontology from the Stephens and Huhns data is given inFig. 1). We be-
lieve that reliably close approximations of consensus ontologies can be found by
sound mathematical models and we regard our work in this direction.

Technical Challenges.Our goal is to reach semantic agreement among dif-
ferent world views shared by different agents. Some technical difficulties are as
follows:

• Conceptual mapping:A concept belonging to the ontology of an agent need
not necessarily be present in other ontologies due to the heterogeneity of
conceptualizations. Therefore, we need to be able to find mappings between
conceptual elements belonging to different ontologies.

• Conflict resolution:Finding consensus among sets of statements is not easy
since they may contain conflicting elements with each other.As Arrow’s
social choice impossibility theorem[Arrow, 1963] states, there can be no
general method for reaching a global preference order that will obey all of
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the preferences specified by the members of a society.

• Consensus generation:What is a good way to generate a consensus ontol-
ogy, which can closely approximate a model of the consensus?

• Consensus evaluation:Measuring the goodness of the final consensus is not
easy since each agent maintains an individual world view.

Contributions. The interactions in a social network enable us to model the
societal beliefs in thequality of resources asexpertisein a given domain. Our
approach for building the consensus ontology is based on combining the beliefs
of experts in each domain where expertise is gained by agentsthrough social in-
teractions. The framework that we use is based on the social interactions of agents
in a referral based multiagent system. The system collaboratively builds the con-
sensus ontology based on the evolving values for the expertise in each domain.
The multiagent system framework provides us with a rich formalism with which
we can model the social interactions and the dynamic nature of the environment.

The system that we have developed has the following contributions. First, we
are able to model the emergence of consensual agreements among socially inter-
acting agents. Second, we developed heuristic measures forevaluating the con-
sensus ontology based on three different levels of abstraction. Third, we present a
method of concept mapping based on the conceptual structures in the ontologies.

Related Work. The naive approach will assign each resource (which can be
computationally represented as an RDF triplet [World Wide Web Consortium (W3C), 2004])
from each agent an equal weight such that the statements withthe majority of the
votes win. Thus, the triplets that are not voted enough are voted off or silenced.
This statistical reinforcement formulation is done by Stephens and Huhns [Stephens and Huhns, 2001],
which is likely to result in conflicting and non realistic setof statements. Aberer
et. al. [Aberer et al., 2003] present a framework for query transformation and
a method for detecting semantic agreements in which peers transform queries
based on their local schema and their already existing mapping functions be-
tween schemas. The approach is named semantic gossiping. Emergent seman-
tics [Aberer et al., 2004] is a recent term being used for the emergent phenomena
regarding the semantic interoperability. The system we have ddevelopedis com-
plying with all the principles of emergent semantics [Aberer et al., 2004] since:
(1) the consensus ontology and each agent’s own beliefs and own local ontology
evolve via a process of forming consensus and a semantic handshake mechanism
that happens among agents where agreement is effected by thequality, strength,
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and the trustworthiness of the statements and agents; (2,3)consensus ontologies
emerge from the local interactions and the negotiations held among agents; (4)
the consensus ontology is a dynamic and self-referential approximation of the
consensus and evolves over time as the agents interact with each other and change
their conversational context; (5) the consensus ontology building is effected by lo-
cal interactions and aagreements which decentralizes the control to the interacting
agents where autonomy is preserved; (6) it can be a model for peer-to-peer data
management and result with more accurate global semantic agreements.

Campbell and Shapiro [Campell and Shapiro, 1998] attempt tofind algorithms
for determining the meanings of unfamiliar words by asking questions. Their ap-
proach resolves terminological mismatches with an ontological mediator. Match-
making is a process used in semantic web applications for finding appropriate ser-
vices for given queries using description logics reasoners[Li and Horrocks, 2003].
Building consensus ontologies facilitates knowledge sharing and has applications
in service composition [Williams et al., 2003]. According to the categorization
and the organization of the material presented in state of the art in ontology align-
ment [Euzenat et al., 2004], we are using both local and global methods for align-
ing concepts and generating consensus ontologies. The local methods that are
employed in our work falls under the heuristic techniques that use terminological
and structural techniques. The global methods that we employ involve compound
and global similarity computations, learning methods thatcan fall under the cate-
gory of semantic gossiping, and alignment extraction techniques via thresholding.

Noy [Noy, 2004] discusses techniques for finding correspondences between
ontologies. For establishing the smallest set of concepts to be used in agent
communication, previous work assumes that agents share some minimal com-
mon ground which can be used to learn new concepts [van Diggelen et al., 2004].
Algebraic methods for merging ontologies when mappings between ontologies
are known are presented by Mitra and Wiederhold [Wiederholdand Mitra, 2001].
Formal concept analysis was used for merging ontologies employing instances
and features of concepts defined in individual ontologies [Stumme and Maedche, 2001].

Sections.The next section investigates representations for the interoperability
of semantic information and provides formal definitions forthe problem of find-
ing a consensus ontology in a step by step manner. Sect. 3 introduces the formal
presentation of the problem of building consensus. We discuss several abstraction
levels for comparing ontologies such as lexical, conceptual, or information re-
trieval. We also discuss methods for mapping concepts. Sect. 4 introduces social
networks of agents and how they communicate and collaboratewith each other
from the perspective of building consensus. In Sect. 5, we present our methods

5



for building consensus ontologies and in Sect. 6, we presentour experiments and
results. The last two sections present the future work and the conclusion.

2 Semantic Information and Consensus Ontologies

There has been extensive work on representing and employinginformation about
semantics. In this section we discuss efforts that share close relations with our
interpretation. We gain a broader perspective by investigating philosophical ap-
proaches and mathematical representations for semantic information. We also
provide formal definitions for the problem of finding a consensus ontology in a
step by step manner.

2.1 Resolving Misunderstandings at the Sign Level

Charles Peirce’s semiotics acts as a model to derive a mathematical representation
for the transmission of semantic information in a scenario close to the one used in
agent communication. In simple terms, whenI is the interpretant,S is the sign,
andO is the object,I interpretsS as a sign ofO [Hookway, 1992]. This is a
triadic mathematical representation for shared semanticsexcluding the instances
of objects. Since the context is a necessary and essential part of translation and
understanding, we assume that it is stored or derived byI.

Another way to represent meaning is through an ostensive perspective via us-
ing instances or examples. Quine asserts that sentences with the same meaning can
be identified by specifying the circumstances under which two sentences have the
same meaning [Quine, 1995]. An ostensive mathematical model for concepts and
contexts exists through formal concept analysis (FCA) [Ganter and Wille, 1999].
The universe is viewed in a formal context which has the concept as its ba-
sic unit having instances and attributes as its building blocks. FCA represents
a context as a triple(E, A, F ) whereE and A are sets of examples (extents)
and attributes (intents) andF : E → A is a mapping function. All attributes
thought with a concept is called itsintensionand all instances for which the
concept can be predicated is called itsextension[Stumme, 2002]. A concept in
the context(E, A, F ) is an(extent, intent) pair whereextent⊆ E, intent ⊆ A,
F (extent) = intent, andF−1(intent) = extent. Thus,F−1(F (extent)) = extent
andF (F−1(intent)) = intent.

In semiotics, context takes part in the translation of signsto objects, whereas
in FCA, context is formed through an ostensive and comprehensive definition by
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the instances and the attributes of objects. Ostensive semiotics can be derived by
combining these two ideas. That is, we can define objects withtheir extents and
intents as it is done in FCA. Then, the interpretant would infer the context as it is
done by FCA.

Triadic world refers to the Peircean interpretation of the world and thedyadic
world refers to a world when the contextual information is immaterial or accepted
as common sense. Semantic information about an object is stored as a tuple
(S, O, I) in the triadic world. The shift from the dyadic to the triadicworld re-
quire us to define the notion of context either via ostension as it is done in FCA or
via other definitions such as the set of queries posed betweenthe communicating
pair, forming the conversational context.

Given two interpretants,Ii andIj , trying to communicate semantic informa-
tion about two different objectsOi andOj signified bySi andSj correspondingly,
the type of misunderstandings that might be encountered between the communi-
cating pair can be classified as follows:

1. Absence of semantic information: An equivalent semantic information
might not be present. An interpretant of1930’s will not be able to under-
stand “neutrinos” as it will be untranslatable [Quine, 1995]; yet the listening
pair might be able to interpret it.

2. Syntactic misunderstandings:Two equivalent objects might have differ-
ent signs; thus the signs aresynonymic(e.g. Morning star and Evening
star). Examples include the use of different languages (e.g. liebe vs. love),
spelling variations within languages (e.g. colour vs. color), misspellings in
entry, mishandling of compound names (e.g. commonsense vs.common-
sense), varying representational constraints for the sameconcept (e.g. local
phone number representation vs. national), and synonymity.

3. Conceptual misunderstandings:Two syntactically equivalent signs might
signify different objects, that is conceptual implications; thus they arehomonymic.
Examples include words having different senses and conceptual interpreta-
tions.

4. Pragmatic misunderstandings: The context in which an object is inter-
preted changes its semantics. This change can move two objects’ seman-
tic information closer or distant. For instance, “episode”has the same
sense [Fellbaum, 1998] with “part” when used in the context of a play but
in the context of medicine, it refers to the occurrence of an illness.
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Even if none of these cases of misunderstandings exist, translation might not
be known due to Quine’s indeterminacy of translation thesis[Quine, 1970], which
states that because of freedom of choice, the exact translation might not be deter-
mined from possibilities that arise from observations. When viewed as a learning
problem, there may exist various functions that fit the observed data; yet it is hard
to determine the exactly the same intended function among the vast amount of
functions that are correct.

The additional advantage of a multiagent system is the ability of asking other
agents when resolving misunderstandings. The process by which we use other
agents’ resources to find semantic mappings between a concept that we do not
understand with a concept that we do may be called as forming a“semantic
bridge” [Stephens and Huhns, 2001]. By using the bridging agents’ resources,
we can establish a link between a previously unknown object to an already known
object that was in our agent’s resources.

2.2 The Problem of Finding a Consensus Ontology

In this section, we present a general mathematical representation for ontologies
and the consensus ontology and provide an initial formulation of the problem of
finding a consensus ontology. Formal definitions are provided as needed in a top-
down fashion.

• Let C represent a set of concepts and<C ⊆ C ×C be the “subClassOf”
relation, which relates two concepts having the subclass ofrelation defining
a partial order over the set of concepts.

• A statementS in 〈C, <C〉 is a3-tuple (cs, <C, co) where cs, co ∈ C repre-
sent the subject and the object respectively such thatcs <C co.

• Two statements,Si = (csi
, <C, coi

) and Sj = (csj
, <C, coj

), conflict with
each other whencsi

is equivalent tocoj
and csj

is equivalent tocoi
.

• A set of statements,S, is consistent when it is conflict-free.

• An ontology is a2-tuple 〈C, <C〉 which represents a consistent set of state-
ments defined overC. Thus,O = {S1, . . . , Sn}.

• Let O∩ be the ontology that represents the intersection of a given set of
ontologies,O. Then,

O∩ =
n
⋂

i=1

Oi = 〈
n

⋂

i=1

Ci, <∩〉,
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whereOi ∈ O for all i, 1 6 i 6 n and <∩ defines an ordering consistent
with all of the given set of orderings.O∪ is defined similarly.

• Let O∗
i represent the set of all possible statements that are consistent with

a given ontologyOi and letO∗ =
⋃n

i=1O
∗
i .

• A consensus ontology,OC , is an ontology which represents the consensus
of a given set of ontologies.

• Given a set of ontologies,O, let OC represent the consensus ontology.
Then,

O∩ ⊆ OC ⊆ O
∪ ⊆ O

∗.

• A consensus ontology,OC , is completewith respect to an ontologyOi

when all the statements ofOi are inOC . Thus,Oi ⊆ OC .

• A consensus ontology,OC , is consistentwith respect to an ontologyOi

when none of the statements inOi conflict with OC .

• A consensus ontology isstrongwhen it is both complete and consistent with
respect to an ontology.

Definition 2.1 (Strong Consensus)
Given a set of ontologies,O, find an ontologyOC such thatOC is strong with
respect to all ontologies inO. �

The requirements for consistency and completeness are in practice hard to
satisfy. Each ontology might be consistent in itself but it will likely to be incon-
sistent with others. Thus, there may be conflicting statements overall and which
one to choose is not easy to decide. Even if the statements arenot conflicting with
each other, the union might not represent a consensus since not every statement is
present in all ontologies and therefore they might not be supported by all. In a sim-
ilar manner, although defining a consensus as the intersection of statements, the
statements that are shared by all ontologies, will represent a consensus, it might
lead to an empty set.

Let HeuristicValuebe a function which returns a value for the goodness of
a consensus ontology.

Definition 2.2 (Learned Consensus)
Find an ontologyOC such thatHeuristicValueis maximized. �
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OC =
⋂n

i=1Oi (Initialization)
S =

⋃n

i=1 Oi − OC

while S 6= ∅ do
Statement = FindBestStatement(OC , S, O)
if Statement then

S = S − Statement ;
OC =OC ∪ Statement ;

end
end
return(OC) ;

Algorithm 1 : Inductive Algorithm for Learning Consensus

Consensus learning may have two differentHeuristicValue function defini-
tions among others:

• Let HeuristicValuebe a function whereHeuristicValue: OC×O→ [0, 1].
Find OC such thatHeuristicValue(OC , O) is maximal.

• Let HeuristicValuebe a function whereHeuristicValue: OC×O∗ → [0, 1].
Find OC such thatHeuristicValue(OC , O∗) is maximal.

Algorithm 1 presents a top-down, inductive learning approach to building a
consensus ontology. A consensus ontology is reached by means of search through
the space of possible formal statement configurations. At each step, the current
best statement which has the highestHeuristicValue(OC , O) is chosen by the
FindBestStatementfunction and added to the consensus ontology. A number of
heuristic measures that can be used for creating aHeuristicValuefunction is given
in Table 1.

3 Consensus Ontology Generation, Management, and
Evaluation

This section presents our formal introduction and framework to the problem of
finding a consensus ontology among a given set of ontologies.Also, conceptual
processing methods for building, managing, and evaluatingconsensus ontologies
are given.
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3.1 Problem Formulation

We define an ontology as a 2-tuple〈C, <C〉 where C represents the set of con-
cepts and<C ⊆ C × C is the “subClassOf” relation, which relates two con-
cepts having the subclass of relation.C1 <C C2 denotes thatC1 is a subconcept
of C2 under the conceptual hierarchy of<C. A multiagent system (MAS) is a set
of agents,A = {A1, . . . ,An}, where agents interact by asking each other ques-
tions and evaluating the answers they receive. Each agentAi has an ontology
Oi = 〈Ci, <Ci

〉 and a lexicon,Li, which defines the set of allowable terms.
We useO∩ to denote the ontology which represents the intersection ofa given

set of ontologies,O, where Oi ∈ O and <∩ defines an ordering consistent
with all of the given set of orderings (equation 14, see Table1). In Table 1, we
define a number of heuristics for evaluating ontologies and their elements. We
base some of our heuristics on Maedche’s [Maedche, 2002] representation. We
compare ontologies at three different levels of abstraction: lexical (equations 1,
2, and 3), conceptual (equations 4, 5, 6, and 7), and based on the measures of
information retrieval (equations 8, 9, 10, 11, 12, and 13).

We compare two ontologies atthe lexical level, by averaging over the syntac-
tic similarities of their lexicon (equation 2). The string matching heuristic that we
use, SM, is defined based on the edit distance,ed (equation 1). The|.| operator
used in the equations corresponds to the length of the lexical term or the size of
the lexicon depending on the context. The similarity of the lexicon of the con-
sensus ontology to the lexicons of component ontologies,L, can be computed by
averaging over all component ontologies (equation 3). Since SM is asymmetric,
we take the arithmetic mean.

At the conceptual level, we use the similarity between the conceptual tax-
onomies of two given ontologies. The conceptual similaritybetween two concepts
Ci and Cj is approximated by calculating the similarity between their ancestor
sets (AS) (equation 4). Based on AS, we calculate the taxonomic similarity (TS)
between two conceptual hierarchies<Ci

of Oi and <Cj
of Oj for a given lex-

ical term (equation 5). When there exists a lexical entryL that is in Li but not
in Lj, then we search for the maximum overlap among all those lexical entries of
Lj (TS2). We define the average taxonomic similarity between two ontologies,TS
(equation 6), and compute the average similarity of the taxonomy of the consen-
sus ontology compared to the taxonomies of component ontologies by averaging
over all component ontologies (equation 7).

We can view building the consensus ontology task within the scope of infor-
mation retrieval, where there exists a set of target elements that we are trying to
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SM(Li, Lj) = max
(

0,
min(|Li|,|Lj |) − ed(Li,Lj)

min(|Li|,|Lj|)

)

(1)

SM(L1,L2) = 1
|L1|

∑

Li∈L1
maxLj∈L2

SM(Li, Lj) (2)

SM(LC, L) = 1
|L|

∑

Li∈L

SM(LC ,Li) + SM(Li,LC)
2

(3)

AS(Ci, <C) = {Cj ∈ C | Ci <C Cj ∨ Ci = Cj} (4)

TS(L,Oi,Oj) =

{

TS1(L,Oi,Oj), if L ∈ Lj

TS2(L,Oi,Oj), if L 6∈ Lj

(5)

TS(Oi,Oj) = 1
|Li|

∑

L∈Li
TS(L,Oi,Oj) (6)

TS(O, O) = 1
|O|

∑

Oi∈O

TS(O,Oi) + TS(Oi,O)
2

(7)

precision(O,OC) = |elements(O) ∩ elements(OC)|

elements(O)
(8)

recall(O,OC) = |elements(O) ∩ elements(OC)|

elements(OC)
(9)

FMeasure(O,OC) =
2 × recall(O,OC) × precision(O,OC)

recall(O,OC) + precision(O,OC)
(10)

Precision(OC , O) = 1
|O|

∑

Oi∈O
precision(Oi,OC) (11)

Recall(OC , O) = 1
|O|

∑

Oi∈O
recall(Oi,OC) (12)

FMeasure(OC , O) = 1
|O|

∑

Oi∈O
FMeasure(Oi,OC) (13)

O∩ =<
⋂n

i=1 Ci, <∩> (14)

Table 1: Heuristic measures for evaluating ontologies and their elements
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retrieve, the consensus ontology, and a larger set that we choose from, the set of
component ontologies. Equations 8-13 give the definitions for our information
retrieval measures where the functionelements(O) returns the set of class lexical
terms in the ontologyO. Precision corresponds to the proportion of selected lex-
ical terms that the system got right (equation 8) whereas recall corresponds to the
proportion of the lexical terms that the system selected (equation 9). Equations
11, 12, and 13 calculate the averages for precision, recall,and F-Measure values
correspondingly. The closer the values are to 1, the better.

3.2 Mapping Concepts

This section presents our method of mapping concepts from different ontologies.
Given two ontologiesOi and Oj with lexicons Li and Lj, let Li ∈ Li and
Lj ∈ Lj. A mappingfunction, m, betweenLi ∈ Li and Lj ∈ Lj is a func-
tion whose domain isLi of Oi and whose range isLj of Oj . Then, under
the mappingm, we can useLj whenever we useLi. Our method for concept
mapping is given in Algorithm 2. The functionOCM returns the level ofordered
conceptual matchbetween two concepts corresponding to the lexical entries in
their respective ontologies. This function is based on the taxonomic similarity
that we have defined.OCM is defined since subgraph isomorphism is known to
be NP-complete [Garey and Johnson, 1979]. We have set the threshold levels for
the concept mapping as0.6, 0.3, and0.5 for α1, α2, andα3 correspondingly. Our
experiments verify that this selection gives us good results. m(Li) = Lj states
that concept topic namesLi and Lj match with the mapping functionm.

Table 2 lists definitions for concept matching. We adopt the mathematical
representation used in [Maedche, 2002] for formal ontologies. The relationF ⊆
LC × C denotesreferencesfor concepts. Let forL ∈ LC:

F(L) = {C ∈ C | (L, C) ∈ F} and forF−1(C) = {L ∈ LC | (L, C) ∈ F}.

We define abstractions for upwards cotopy (UC, equation 15), lexical concept
match (LCM, equation 16), concept match (CM, equation 17), ordered upwards
cotopy (OUC, equation 18), ordering match (OM, equation 19), and ordered con-
cept match (OCM, equation 20). The context of a given concept may also be based
on its downward cotopy; but we do not consider the downward cotopy, since we
cannot get a total ordering between the elements of the set.LCM ignores the
depth of the hierarchy considered in different ontologies.Highly specialized on-
tologies might use various levels when representing the same hierarchical compo-
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UC(Ci, <C) = {Cj ∈ C | Ci <C Cj) ∨ Ci = Cj} (15)

LCM(Li,Oi, Lj,Oj) = CM(F(Li),Oi,F(Lj),Oj) (16)

CM(Ci,Oi, Cj,Oj) =
|F−1

i (UC(Ci,<Ci
)) ∩ F−1

j (UC(Cj ,<Cj
))|

|F−1

i (UC(Ci,<Ci
)) ∪ F−1

j (UC(Cj ,<Cj
))|

(17)

OUC(Ci, <C) = {Cj ∈ C | Ci <C Cj) ∨ Ci = Cj}6<C
(18)

OM(A6A
, B6B

) =
∑n−1

i=1 ai 6A ai+1 ⇔ m(ai) 6B m(ai+1) (19)

OCM(Ci,Oi, Cj, Oj) =
OM(OUC(Ci,<Ci

), OUC(Cj ,<Cj
))

min(|OUC(Ci,<Ci
)|, |OUC(Cj ,<Cj

)|)
(20)

Table 2: Methods for mapping concepts

sition. For instance, given two ontologies,〈Ci, <Ci
〉 and 〈Cj , <Cj

〉, such that:

{Ci <Ci
B, B <Ci

A} ⊆ <Ci
, and

{Cj <Cj
Y, Y <Cj

B, B <Cj
X, X <Cj

A} ⊆ <Cj
,

then the concept match betweenCi and Cj becomes:CM(Ci,Oi, Cj,Oj) = 3
5
.

This discrepancy might increase when comparing two concepts from ontologies
belonging to two different agents with different expertiselevels.

One way to overcome this is to define similarity based on the compliance of
the hierarchical order in which concepts are positioned in the two hierarchies,
which, in a way, provides us a scaling of the similarity measure. Based on such
a measure,Ci and Cj should have a perfect match. Thus, we define an ordered
concept set as follows: anordered setis ann-tuple, denoted by{a1, a2, . . . , an}6,
such that there exists a total order,6, defined on the elements of the set. Based
on ordered sets, we can define a new type of mapping, that we call monotone
mapping.

Definition 3.1 (Monotone mapping)
A mapping m : Li → Lj, whose domain is the lexicon ofOi = 〈Ci, <Ci

〉
and range is the lexicon ofOj = 〈Cj, <Cj

〉, is monotone or order-preserving, if
for Li, Lj ∈ Li, Fi(Li) 6Ci

Fi(Lj) implies Fj(m(Li)) 6Cj
Fj(m(Lj)), where

m(Li),m(Lj) ∈ Lj. �
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Given: Two lexical entriesLi and Lj belonging to ontologiesOi and Oj

respectively, find if their concepts match using the thresholds α1, α2, and α3.
if SM(Li, Lj) > α1 then

if OCM(Li,Oi, Lj ,Oj) > α2 then
m(Li) = Lj

else ifOCM(Li,Oi, Lj ,Oj) > α3 then
m(Li) = Lj

else
m(Li) 6= Lj

Algorithm 2 : Concept mapping

Ordered concept match (OCM) is based on order-preserving mappings.6<C

term in the definition ofOUC (equation 18) represents the total order based on
the taxonomic hierarchy of concepts. Various techniques for representing order
in RDF are presented by Melnik and Decker [Melnik and Decker,2001]. The
overlap between two ordered sets is given by the ordering match (OM), where
A6A

= {a1, a2, . . . , an}6A
, B6B

= {b1, b2, . . . , bn}6B
, and m is a mapping

whose domain isA6A
and range isB6B

. Simplest such mapping is the lexi-
cographic equivalence function, which can be defined as:m = {(x, y) | x ∈
A6A

, y ∈ B6B
, Lex(x) = Lex(y)} where Lex() is a function from a set el-

ement to a lexical entity which signify the element. The pathcomparison tech-
nique [Euzenat et al., 2004] is similar in manner since it also compares the labels
of objects as well as the sequence of labels of related entities.

4 Social Networks

A referral system is a multi-agent system in which agents cooperate by using
referrals where a referral corresponds to a link to another agent stored by the
models of agents. A social network refers to a set of agents which socially interact
with each other by using queries and answers [Yolum and Singh, 2003]. Agents
in our system have a number of policies to learn models of other agents that they
interact with. These models store information about their expertise, the projected
ability to produce correct answers, and their sociability,the projected ability to
produce correct referrals.

The system differentiates between each agent’s interests and expertise since
these two aspects do not necessarily overlap. This enables us to model the change
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in each agent’s expertise as they develop new interests and update their expertise
correspondingly. Each agent poses a query based on its own interests. These
queries are first sent to potentially expert agents in the neighborhood of an agent.
Agents receiving a query may answer the query based on their confidence in their
answer or refer to another agent that is more appropriate. The received answers
are used for evaluating the expertise of the answering agent. We represent queries,
answers, and interests as sets of〈term, expertiseValue〉 tuples when we calculate
the similarities between them. Query terms selected form a subset of the concepts
chosen from the local ontology of a given agent. The set of queries posed between
any two communicating pair of agents forms the conversational context.

Definition 4.1 (Similarity )
Given two sets of term-value mappings, a queryQ and expertiseE, the similarity
of Q to E is found as follows:

Q ⋄ E =

∑

i qi × ej
√

n
∑n

i=1 q2
i

,

wheren is the number of terms in the query,qi ∈ Q is a term inQ, and ej ∈ E

is a term inE such thatm(qi) = ej . �

Definition 4.1 is similar to the cosine similarity measure that weighs exper-
tise vectors with higher magnitude more. Each agent has an expertise level in a
concept term from its ontology, defined in the range[0, 1]. Expertise levels are
learned dynamically by the social network through query-answer interactions and
assessments of the answers. As the interests of agents change, the contents of the
questions asked change and progressively, this causes the evolution of the exper-
tise levels and the consensual structure. Thus, the system we have developed can
be referred to as a dynamically evolving semantic system based on social interac-
tions.

Agent Communication. When two agents,Ai andAj, communicate, they
may experience misunderstandings based on the discrepancies in their intended
meanings. Given a lexical termLi from Oi being used byAi to communicate
with Aj, we might observe thatLi is not present inOj . In that case, we need
to find the best matching concept fromOj. In another case, two lexical termsLi

and Lj can be syntactically equivalent but conceptually different. We accept that
two agents can reach a shared understanding when the lexicalterms they use to
communicate share the same meaning where the meaning is based on the terms
themselves and their corresponding conceptual structures. We resolve these issues
by using our concept mapping algorithm (Algorithm 2).
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Given: A set of agents,A, sharing a set of ontologies,O, find the consensus
ontology,OC , represented by a consistent set of statements such that it
represents a consensus for the MAS.

OC =
⋂n

i=1 OAi

while newLeafSetSize6= LeafSetSizedo
LeafSet= getLeaves(OC)
LeafSetSize= |LeafSet|
for Csubj∈ LeafSetdo
Aexpert= getDomainExpert(O, Csubj)

expansionSet= getDomainConceptualization(OAexpert, Csubj)

for Cobj ∈ expansionSetdo
C ′

obj = getBestMatchingConcept(O, Cobj)

if C ′

obj then

add(OC , Csubj, C
′

obj)

else
add(OC , Csubj, Cobj)

end
newLeafSet= getLeaves(OC)
newLeafSetSize= |newLeafSet|

end
end

Algorithm 3 : Building consensus based on domain expertise

5 Building Consensus Based on Domain Expertise

In this section, we present a consensus building algorithm based on the observa-
tion that an agent who is expert in a domain will likely be ableto conceptualize
the underlying structure better than others.

In Algorithm 3, we first initialize the consensus ontology tothe intersection
of the component ontologies. This forms the upper ontology model accepted by
all agents in the MAS. For each concept in the leaf set, that isthe set of concepts
that are considered as leaves when the ontology is seen as a tree, we determine
the expert agent in that domain. Given the set of agent ontologies from the MAS
and a concept, thegetDomainExpertfunction returns the agent,Aexpert, which
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is the expert in the domain corresponding to the concept. Based onAexpert’s
conceptualization of the domain, we find an expansion set,expansionSet, which
contains the set of concepts that are subclasses of the domain. For each concept
Cobj in the set, we try to find a matching concept from the componentontologies
which has a higher expertise level. For a given set of component ontologies and
a concept, thegetBestMatchingConceptfunction returns the best matching con-
cept, C ′

obj, from all ontology models which has the best expertise levelgreater

than the expertise level ofCobj. If the expertise level ofC ′

obj is not greater than

the expertise level ofCobj, then this function returns the empty set.

5.1 Randomized Induction Algorithm for Building Consensus

In this section, we present a method based on heuristic search in the space of RDF
statement triples for finding the consensus ontology as local agreement among
multiple component ontologies. We seek to find the best consensus ontology,
OC , by adding statements to the initial consensus, which is setto O∩. To prevent
local minima, we use an approach based on randomized algorithms in which we
can randomize the statement selection up to a level so that weare allowed to make
bad moves.

Our general approach to consensus building is based on simulated anneal-
ing [Russell and Norvig, 1995]. In the inner loop, we pick a random statement
and check to see if it improves the heuristic value. If it does, we add the statement
to our current consensus ontology. Otherwise, with some probability, p = e

∆E
T ,

we add the statement.p decreases exponentially with the badness of the move,
∆E. Also, the parameterT determines the likelihood of us allowing bad moves.
scheduledetermines the value ofT based on a function of the number of cycles
that has already been completed.

In Algorithm 4, theHeuristicValuefunction is any heuristic measure that es-
timates the level of overlap based on the given component ontologies. We choose
to use the taxonomic overlap measure,TO, which corresponds to the taxonomic
overlap among its arguments. This is due to our data set whichcontains mostly
taxonomic relations and due to the fact that taxonomic relations are more impor-
tant than non-taxonomic ones.RandomNeighboringStatement(OC , S) is a func-
tion which returns a randomly chosen neighboring statement, Sk ∈ S, of the
current consensus ontology such thatOC ∪ Sk is consistent. By neighboring
statements to an ontology, we mean the set of statements thatcan be added to
extend a given ontology such that the consistency is preserved.
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Given: A set of ontologies,O, find the consensus ontology
represented by a consistent set of statements,OC , such that it has
maximum HeuristicValue.

OC =
⋂n

i=1Oi (Initialization)
S =

⋃n

k=1 Ok − OC

t = 0; (Temperature)
e = 0; (Energy)
for t← 1 to∞ do

T ← schedule[t]
if T = 0 then

returnOC

Sk = RandomNeighboringStatement(OC , S)

∆E = HeuristicValue(OC ∪ Sk, O) − HeuristicValue(OC , O)
if ∆E > 0 then
OC = OC ∪ Sk

else
OC = OC ∪ Sk with probabilitye

∆E
T

end
Algorithm 4 : Building consensus by simulated annealing

6 Experiments and Results

We have experimented with a number of agents ranging from5 to 1000, having
various numbers of differing ontologies ranging from2 to 53. The expertise lev-
els of agents are initialized to a measure of the depth of the domain within each
agent’s ontology. The results of our experiments are given in Table 3. By mak-
ing use of the criterion we introduced in [Biçici, 2006b] and in [Biçici, 2006a], we
evaluate a consensus ontology based on how well it agrees with the component on-
tologies. The evolving nature of the consensus ontology that is generated among
500 agents using53 different ontologies can be seen in Figs. 3, 4, and 5, which
are ordered according to their F-Measure performances. Each figure represents
the consensus ontology that is generated at some stage of theevolution.

In our experiments, we attempted to address the variance in the performance
of the consensus ontology with respect to the number of agents involved and the
number of differing ontologies used. We present our resultsin Table 3 where
AvgSynSimand AvgTaxSymcorresponds to average syntactic and taxonomic sim-
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Number of agents
Number of ontologies 5 10 25 50 100 250 500 1000

AvgSynSim 0.3856 0.3856 0.3856 0.3856 0.3856 0.3856

2 AvgTaxSim 0.2890 0.2890 0.2890 0.2890 0.2890 0.2890

FMeasure 0.5417 0.5417 0.5417 0.5417 0.5417 0.5417

AvgSynSim 0.1258 0.1249 0.1231 0.1267 0.1267 0.1240

5 AvgTaxSim 0.2011 0.1997 0.1970 0.2025 0.2025 0.1984

FMeasure 0.2433 0.2472 0.2550 0.2393 0.2393 0.2511

AvgSynSim 0.0710 0.0783 0.0783 0.0759 0.0979 0.0963

10 AvgTaxSim 0.1666 0.1678 0.1678 0.1674 0.1962 0.1777

FMeasure 0.2234 0.1893 0.1893 0.2006 0.1993 0.2384

AvgSynSim 0.0266 0.0264 0.0265 0.0266 0.0261 0.0262

25 AvgTaxSim 0.1278 0.1289 0.1283 0.1278 0.1305 0.1300

FMeasure 0.1239 0.103 0.1135 0.1239 0.0716 0.0821

AvgSynSim 0.0162 0.0141 0.0131 0.0144 0.0141

53 AvgTaxSim 0.1181 0.1188 0.1164 0.1281 0.1188

FMeasure 0.0794 0.0884 0.0938 0.0831 0.0884

Table 3: Evaluation results for the consensus built

Figure 2: Results plotted in 3D
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ilarity scores correspondingly. The resulting graph when the results are plotted
in 3D is given in Fig. 2. The results show that the performanceincreases some
as we decrease the number of agents collaborating towards the consensus and it
increases greatly as we decrease the number of different ontologies being used by
the agents.

We have also experimented with the threshold values used in the similarity
measures to find the best setting for building consensus withour system. Under
the setting with50 agents sharing5 different ontologies, we have found that the
α values that are used in our concept mapping algorithm (Algorithm 2) with val-
ues of0.6, 0.3, and0.5 for α1, α2, and α3 correspondingly gave the best results
for the syntactic and taxonomic match measures. F-Measure is maximized when
α1, α2, and α3 are set to0.5, 0.2, and0.3. We chose to use0.6, 0.3, and0.5
for the presented experiments which gave good results overall. All concept map-
ping algorithms need to balance the weights given for the lexicon, which may be
regarded as the pointers to the real concepts, and the weights given for the con-
ceptual structures themselves. Theα values represent that if there exists a high
lexical match value for a lexical term, then we also check fora level of structural
match via ordered conceptual match. But if the lexical matchis not at a satis-
factory level, then we further require a higher level structural match that could
indicate a conceptual mapping possibility.

One research question that needs to be further answered is the existence of
plateaus where the consensus ontology might reach after some time and whether
there are some phenomena that leads to such plateaus. We havenot yet exper-
imented with techniques that can help us identify such regions if they do exist.
Consensus plateaus can help us shed new light on the various phenomena that
appear in emergent semantics, their mechanisms, and their relationships.

7 Future Work

In the current version of the system, only the consensus ontology is allowed to
evolve whereas individual agents’ ontologies remain unchanged. Allowing each
agent to change its ontology based on queries might be a better alternative for
simulations.

The final consensus ontology that is built can be refined basedon some heuris-
tics. One such heuristic is thecoherence continuum. If there is alternation of
the expert agent chosen for domains that are consecutively ordered based on the
subclass relation, such as inC1 ⊆ C2 ⊆ C3, then we may choose to refine the
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consensus ontology so that all the domains are chosen from the alternating agent’s
recommendation. For example, ifA1 is the expert for domainsC1 and C3 and
A2 is the expert forC2, then to preserve the coherence continuum we can discard
the conceptualization ofA2, which can be considered as an interposer.

Another refinement can be done in choosing good domain experts. We can
choose to store domain expert histories which can later be used to select experts
from when the expertise of the best agent in the current domain is not as good
as the agents who are experts in the upper levels of the consensus ontology. This
retrospective approach assumes that an expert agent chosenfor a given concept
term is likely to be good in its subconcepts. However, in the real world, this
assumption can easily be challenged. For instance, an expert in programming
need not necessarily be good inLISPprogramming itself.

Also, the investigation regarding the existence of consensus plateaus appears
promising and postures like a fruitful avenue for the continuance of this research.

8 Conclusion

We have studied the generation, management, and evaluationof consensus on-
tologies among agents having differing ontologies within the multiagent system
framework. The system that we have developed has the capability of modeling the
emergence of consensual agreements among socially interacting agents. We have
also developed measures for evaluating the consensus ontology based on three
different levels of abstraction and heuristic methods for conceptual processing.
Interactions between agents based on queries and their assessments allow us to
model the quality of resources.

We have provided formal definitions for the problem of findinga consensus
ontology in a step by step manner. Conceptual processing methods for building,
managing, and evaluating consensus ontologies are given and experimental re-
sults are presented. We have presented a method of concept mapping based on
the conceptual structures in the ontologies. An algorithm for generating the con-
sensus ontologies using the authoritative agent’s conceptualization is presented
and another method is developed based on heuristic search inthe space of RDF
statement triples for finding the consensus ontology as local agreement among
multiple component ontologies

The system that we have developed can handle arbitrary ontologies having
both taxonomic and non-taxonomic relations. The dynamic emergence of con-
sensus mimics the evolution of language. The resulting system that we have de-
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veloped is concordant with the principles of emergent semantics. The presented
approach looks promising and opens new directions for further research includ-
ing the investigation of consensus plateaus in systems withthe characteristics of
emergent semantics. We expect that this research will help us understand and for-
malize the tradeoffs between approaches to building consensus which can later
determine inference mechanisms that can be in place.
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Figure 3: Consensus ontology generated at some stage of the evolution.
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Figure 4: Consensus ontology generated at another stage of the evolution.
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Figure 5: Consensus ontology generated at another stage of the evolution.

29


