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Abstract. This paper presents a novel language-independent context-based sen-
tence alignment technique given parallel corpora. We can view the problem of
aligning sentences as finding translations of sentences chosen from different sources.
Unlike current approaches which rely on pre-defined features and models, our al-
gorithm employs features derived from the distributional properties of sentences
and does not use any language dependent knowledge. We make use of the context
of sentences and introduce the notion of Zipfian word vectors which effectively
models the distributional properties of a given sentence. We accept the context to
be the frame in which the reasoning about sentence alignment is done. We exam-
ine alternatives for local context models and demonstrate that our context based
sentence alignment algorithm performs better than prominent sentence alignment
techniques. Our system dynamically selects the local context for a pair of set
of sentences which maximizes the correlation. We evaluate the performance of
our system based on two different measures: sentence alignment accuracy and
sentence alignment coverage. We compare the performance of our system with
commonly used sentence alignment systems and show that our system performs
1.1951 to 1.5404 times better in reducing the error rate in alignment accuracy
and coverage.

1 Introduction

Sentence alignment is the task of mapping the sentences of two given parallel corpora
which are known to be translations of each other to find the translations of correspond-
ing sentences. Sentence alignment has two main burdens: solving the problems incurred
by a previous erroneous sentence splitting step and aligning parallel sentences which
can later be used for machine translation tasks. The mappings need not necessarily be
1-to-1, monotonic, or continuous. Sentence alignment is an important preprocessing
step that effects the quality of parallel text.

A simple approach to the problem of sentence alignment would look at the lengths
of each sentence taken from parallel corpora and see if they are likely to be translations
of each other. In fact, it was shown that paragraph lengths for the English-German par-
allel corpus from the economic reports of Union Bank of Switzerland (UBS) are highly
correlated with a correlation value of 0.991 [6]. A more complex approach would look
at the neighboring sentence lengths as well. Our approach is based on this knowledge of



context for given sentences from each corpus and the knowledge of distributional fea-
tures of words, which we name Zipfian word vectors, for alignment purposes. A Zipfian
word vector is an order-free representation of a given sentence in a corpus, in which the
length and the number of words in each entry of the vector are determined based on the
quantization of the frequencies of all words in the corpus.

In this paper, we examine alternatives for local context models and present a system
which dynamically selects the local context for a given sentence pair which maximizes
the correlation for the pair in the given parallel corpora. The resulting learning method-
ology is language-independent; it handle non-monotonic and noisy alignments; it does
not require any stemming, dictionaries, or anchors; and it extends the type of alignments
available up to 6-way. Sentence alignments of given parallel corpora are determined by
looking at the local context of a given sentence which consists of surrounding sen-
tences. Therefore, we investigate the selection of context in relation to the performance
increase in the sentence alignment task.

The problem of sentence alignment is a central problem in machine translation and
similar in essence to many other problems that involve the identification of mappings.
It is a subset of the problem of sequence comparison, which deals with difficult com-
parisons that arise when the correspondence of items in the sequences are not known
in advance [9]. We used a publicly available and easily accessible dataset [5] for our
experiments, so that our results can be easily replicated by others.

We observe that valuable information can be inferred from the context of given
sentences and their distributional properties for alignment purposes. The following sec-
tions are organized as follows. In the next section, we review related work and present
its limitations. In Sect. 3, we give some notation about sentence alignment, define Zip-
fian word vectors, present our feature representation, and discuss context in sentence
alignment. We also present the properties of local context in sentence alignment and
our sentence alignment algorithm in this section. In Sect. 5, we present the results of
our experiments and the last section concludes.

2 Related Work

Brown et. al. [2] provide a statistical technique for sentence alignment using the number
of word tokens in each sentence in addition to anchor points. The dataset they used
(Canadian Hansards corpora 1) contains comments that serve as anchor points. They
define a bead as groupings of English and French sentences that have close lengths and
an alignment as a sequence of beads. Gale and Church [6] observe that sentence lengths
of source and target sentences are correlated. They limit their alignments to 1-1, 1-0,
0-1, 2-1, 1-2, and 2-2 types of mappings, where the numbers represent the number of
sentences that map to each other. The reason for their choice in using sentence lengths
in terms of characters rather than in terms of word tokens as was chosen by Brown et.
al. [2] is that since there are more characters there is less uncertainty.

Both Brown et. al. and Gale and Church [6] assume that the corpus is divided into
chunks and they ignore word identities. Chen [4] describes an algorithm that constructs

1 Available from Linguistic Data Consortium at http://www.ldc.upenn.edu/



a simple statistical word-to-word translation model on the fly during sentence align-
ment. The alignment of a corpus (S, T ) is the alignment m that maximizes P (T ,m | S),
where P denotes the probability. Chen found that 100 sentence pairs are sufficient to
train the model to a state where it can align correctly. Moore’s [10] sentence alignment
model combines sentence-length-based and word-correspondence-based approaches,
achieving high accuracy at a modest computational cost. Moore uses a modified ver-
sion of the IBM Translation Model 1 [3]:

P (T | S) =
ε

(l + 1)m

m∏

j=1

l∑

i=0

tr(tj |si),

where tr(tj |si) corresponds to the translation probability of the word tj ∈ T = {t1, . . . , tm}
given si ∈ S = {s1, . . . , sl} and ε is some small fixed number. Instead of P (T |S),
Moore makes use of P (S, T ).

Context and its selection is very important in many areas of natural language pro-
cessing. Most of the work on context focuses on finding an optimal context size which
gives good performance globally on the test cases. Yet this optimal value is sensitive to
the type of ambiguity [16]. The dynamic nature of the context is noticed for the word
sense disambiguation task by Yarowsky and Florian [17] and they further claimed that
the context sizes for nouns, verbs, and adjectives should be in the 150, 60-80, and 5
word vicinity of a given word respectively. Wang [15] gives a nice example of word
senses’ context dependence in Fig 1. As we increase the size of the context, the sense
of the Chineese word varies between think and read. Ristad [12] makes use of a greedy
heuristic to extend a given context for the purpose of finding models of language with
fewer parameters and lower entropy. In this work, we accept the context to be the frame
in which the reasoning about sentence alignment is done. We examine alternatives for
local context configurations and demonstrate that our context based sentence alignment
algorithm performs better than prominent sentence alignment techniques.

Fig. 1. Word sense dependence on context

Previous work on sentence alignment assume that the order of sentences in each
corpus is preserved; as the beads on a string preserve the order, their models assume
that the mapping function m is monotonic. Sentence alignment literature makes ex-
tensive use of simplifying assumptions (e.g. the existence of anchors, dictionaries, or



stemming), biased success criterion (e.g. selecting only 1-1 type alignments or remov-
ing badly aligned sentences from consideration), and the use of datasets that cannot be
qualitatively judged and compared to other results. In this paper, we overcome these
limitations by removing simplifying assumptions about the dataset and generalizing the
problem space by generalizing our representation of the data. Our goal is not to seek the
best performance in only 1-1 type alignments since machine translation tasks cannot be
reduced to 1-1 type alignments. We also introduce a new measure of success, sentence
alignment coverage, which also considers the number of sentences involved in the align-
ment. We use the Multext-East 2 corpus, which provides us access to large amounts of
manually sentence-split and sentence-aligned parallel corpora and a good dataset for the
evaluation of performance. As this dataset contains alignments for 9 different language
pairs, it suits well for demonstrating our system’s language independence.

3 Sentence Alignment

3.1 Problem Formulation

A parallel corpus is a tuple (S, T ), where S denotes the source language corpus and
T denotes the target language corpus such that T is the translation of S . Since the
translation could have been done out of order or lossy, the task of sentence alignment
is to find a mapping function, m : S → T , such that a set of sentences T ⊆ T where
T = m(S) is the translation of a set of sentences S ⊆ S . Then, under the mapping m,
we can use T whenever we use S.

We assume that S = {s1, . . . , s|S|} and T = {t1, . . . , t|T |}}, where |corpus| refers
to the number of sentences in corpus and si and ti correspond to the ith sentences
in S and in T respectively. The sentences in S and T form an ordered set where an
ordered set is an n-tuple, denoted by {a1, a2, . . . , an}6, such that there exists a total
order, 6, defined on the elements of the set. We also assume that a set of sentences
S ⊆ S where S = {si, si+1, . . . , sj} is chosen such that ∀k, i≤ k < j, sk 6S sk+1.
The same argument applies for a set of sentences selected from T . Therefore, it is
also meaningful to order two sets of sentences S1 and S2 selected from a given corpus
S with the following semantics: Let startS1 and startS2 be the starting sentences of
S1 and S2 correspondingly, then, S1 6S S2 ⇔ startS1 6S startS2 . A mapping
m : S6S → T6T , is monotone or order-preserving, if for S1, S2 ⊆ S , S1 6S S2

implies m(S1) 6T m(S2), where m(S1),m(S2) ⊆ T .
The usual evaluation metric used is the percentage of correct alignments found in

a given set of alignments, which we name sentence alignment accuracy. This measure
does not differentiate between an alignment that involves only one sentence as in 1-
0 or 0-1 type alignments and an alignment that involves multiple sentences as in 1-5.
Therefore, we define sentence alignment coverage as follows:

Definition 1 (Sentence Alignment Coverage). Sentence alignment coverage is the
percentage of sentences that are correctly aligned in a given parallel corpus.

Thus, for sentence alignment coverage, an alignment of type 1-5 is three times more
valuable than an alignment of type 1-1.

2 Also available at http://nl.ijs.si/ME/V3/



3.2 Zipfian Word Vectors

It is believed that distribution of words in large corpora follow what is called Zipf’s
Law, where “a few words occur frequently while many occur rarely” [18]. We assume
that distributions similar to Zipfian are ubiquitous in all parallel corpora. Based on this
assumption, we create Zipfian word vectors by making use of the distributions of words
in a given corpus.

Definition 2 (Zipfian Word Vector). Given a set of sentences, S, chosen from a given
corpus, S , where maxFreq represents the frequency of the word with the maximum
frequency in S , and a binning threshold, b, the Zipfian word vector representation of S

is defined as a vector V of size log(maxFreq)
log(b) , where V [i] holds the number of words in

S that have a frequency of b log(freq(w))
log(b) c = i for word w ∈ S.

Thus, each bin contains the number of words with similar frequencies in the given
corpus. We assume that ZWV(S) is a function that returns the Zipfian word vector of a
given set of sentences S. Thus, for a single sentence as in:

S = " big brother is watching you " , the caption beneath it ran .,

the Zipfian word vector becomes:

ZWV(S) = [14, 1, 3, 0, 1, 3, 2, 0, 1, 1, 2],

where the sentence length in the number of tokens is added to the beginning of the
Zipfian word vector as well. Note that Zipfian word vectors contain information about
anything that is recognized as a token after tokenization.

The TCat concept [8] used for text classification is similar in its use of Zipfian
distribution of words. While TCat is based on three levels of frequency (high, medium,
and low frequency levels) we vary the length of the Zipfian word vector to increase
the accuracy in the learning performance and adapt to the problem. Also, in TCat, each
level of frequency behaves as a binary classifier, differentiating between positive and
negative examples whereas each bin in our model behaves as a quantization of features
to be used in learning.

3.3 Feature Representation

We assume that S = {S1, . . . , Si, . . . , SN} and T = {T1, . . . , Ti, . . . , TN} where N
is the total number of alignments and Si and Ti correspond to the set of sentences
involved in the ith alignment. For each set of sentences that become a candidate for
alignment within the sentence alignment algorithm, we create what we call the Zipfian
word matrix. The Zipfian word matrix of a given set of sentences, S, is essentially the
matrix we get when we concatenate the Zipfian word vectors surrounding S based on
S’s local context, which contains at most 2 × w + 1 rows for a given window size of
w. Then the decision whether T is the translation of S is based on the two dimensional
(2D) weight decaying Pearson correlation coefficient of their corresponding Zipfian
word matrices.



Weight decaying is applied to the sentences that are far from S, which is the sen-
tence according to which the context is calculated. Exponential decaying is applied with
decaying constant set to 0.7. The use of weight decaying for 2D Pearson correlation co-
efficient does not improve statistically significantly, but it increases the accuracy and
decreases the variance; hence giving us a more robust value.

3.4 Context in Sentence Alignment

Fig. 2. Example Sentence Alignment Scenario

The sentence alignment algorithm we have developed is context-based in the sense
that features belonging to the sentences that come before and after the current sentence
are also considered. We represent the local context of a given set of sentences as a pair,
the number of sentences to consider before and after the given set of sentences. The
sentences in a given corpus vary in content and size, therefore setting the local context
to a specific value might not be effective. A sample scenario of sentence alignment is
depicted in Fig. 2 where the sets of source and target sentences that are being compared
are drawn in ellipses. The local context for the given source and target set of sentences
in the figure can be represented as (2, 4) and (3, 3) respectively. Although the local
context shows variance, for two sets of sentences to be judged as translations of each
other, the total length for the source and target sets of sentences’ local contexts should
be the same. This is because the comparison is based on the value of the 2D weight
decaying correlation coefficient score, which is retrieved by using the local contexts of
each pair of set of sentences compared.

Let S be the set of sentences from the source corpus and let its local context be
represented as (bs, as) representing the number of sentences that come before and after
S. Similarly, the local context for the corresponding set of sentences T in the target
corpus can be represented as (bt, bs + as − bt). For a given context window size limit,



w, there can be w3 such local context selections for the pair S and T . We call this the
full local context search.

Given a set of local context configurations, C, how are we going to make better
decisions? There are three alternatives that we consider:

– Accept the maximum score attained from among C alternatives for the quality of
the alignment and store the corresponding local contexts for observing what kind
of local context configurations results in the highest scores.

– Accept the average score attained from among C alternatives for the quality of the
alignment.

– Accept the average of the top k scores attained from among C alternatives for the
quality of the alignment. We chose k to be 5 for our experiments. Evaluating ac-
cording to the average of the best k results is a technique which is successfully used
in discriminating the semantics among different word pairs [14, 1].
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Comparing Local Context Sizes With Maximum Correlation Score

 

 

b ratio = bs / bt

a ratio = as / at

s ratio = as / bs

t ratio = at / bt

Fig. 3. Comparing local context sizes that return the maximum correlation score

Fig. 3 plots the resulting local context size ratios which result in the highest score
after full local context search when we accept the maximum score to be the score for the
given pair. These results were collected when the Lithuanian-English dataset was used
for the full local context search. The actual average context sizes are listed in Table 1.
One interesting observation from the results is that as and at are increasingly larger
than bs and bt as we increase w. This is in line with the intuition that the sentences that
come before have larger weight in determining the context. Another observation is that



the corresponding local contexts for S and T get closer as we increase w. We can see
that on the average their sizes are the same with ±0.001 difference in their ratio. The
first row of Table 1 shows that the ratio of exactly the same sized local contexts flattens
to 63% as w is increased. So in nearly two thirds of the local context configurations, the
local context sizes for S and T are exactly the same as well.

w=1 w=2 w=3 w=4 w=5

Same Context Size Ratio 1 0.6950 0.6306 0.6302 0.6300

bs 1 1.4256 1.8029 2.0422 2.2414

bt 1 1.4200 1.8017 2.0422 2.2422

as 1 1.4429 1.8277 2.0895 2.3186

at 1 1.4484 1.8289 2.0895 2.3178

Static Context Accuracy 0.9082 0.9184 0.9184 0.92177 0.9116

Static Context Coverage 0.8892 0.8990 0.8990 0.9023 0.8909
Table 1. The ratio of exactly the same sized local contexts and average context sizes that attain
maximum score with full local context search for the Lithuanian-English pair

Based on these observations, considering only those local contexts that are symmet-
ric (i.e. bs = bt and as = at) appears to be a feasible approach. For a given context
window size limit, w, there can be w2 such local context selections for the pair S and
T . We call this the symmetric local context search. The resulting local context sizes for
each language pair with the maximum score selection when w is chosen to be 4 is given
in Table 2.

Dataset b a Increase
Bulgarian 1.9564 1.9936 1.9%

Czech 1.9610 1.9961 1.8%

Estonian 1.9563 2.0129 2.9%

Hungarian 1.9723 1.9964 1.2%

Lithuanian 1.9720 2.0246 2.7%

Latvian 1.9667 2.0043 1.9%

Romanian 1.9275 1.9688 2.1%

Serbo-Croatian 1.9424 1.9755 1.7%

Slovene 1.9486 1.9765 1.4%
Table 2. Local symmetric context sizes per language - English pairs

The other option in context size selection is to set it to a static value for all compar-
isons. The last two rows in Table 1 show the accuracy and coverage performances when
w is chosen globally for the whole dataset. Based on these results, we select w to be 4
in our experiments in which the context is static.



3.5 Sentence Alignment Algorithm

Our sentence alignment algorithm makes use of dynamic programming formulation
with up to 6-way alignments with extensions to handle non-monotonic alignments.
The algorithm is essentially a modified version of the Needleman-Wunsch sequence
alignment algorithm [11] with gap penalty set to −0.5. Further discussion on dynamic
programming methodology to solve sentence alignment problems can be found in [6]
or in [4]. We use the assumption that the alignments are found close to the diagonal
of the dynamic programming table to further speed up the alignment process. Another
property of our system is its ability to model up to 6-way alignments.

Another benefit in using sequence alignment methodology is our ability to model
not only constant gap costs in the alignments but also affine as well as convex gap costs
(a good description for affine and convex gap costs is in [7]). However, as the dataset
does not provide enough contiguous gaps, we have not tested this capability; yet it is
likely that affine and convex gap costs model the gap costs in sentence alignment better.

4 Experiments

We used the George Orwell’s 1984 corpus’s first chapter from Multext-East [5], which
contains manually sentence split and aligned translations for English, Bulgarian, Czech,
Estonian, Hungarian, Romanian, Slovene, Latvian, Lithuanian, and Serbo-Croatian. In
all of our experiments, the target language pair is chosen to be English. We compared
the results of our system with that of hunalign [13] and Moore’s system [10]. Without
an input dictionary, hunalign makes use of the Gale and Church [6] algorithm which is
based on sentence lengths, and builds a dictionary dynamically based on this alignment.

Our first couple of experiments are based on choosing appropriate parameters. We
chose to use the Lithuanian-English pair since its alignment types are more complex
compared to the other datasets (6 different alignment types: 2-2, 2-1, 1-1, 1-3, 1-2, 1-6
with 1, 7, 274, 1, 10, 1 counts respectively). To reduce the complexity of calculations
to a manageable value, the value of b is chosen to be 10.

Our results show that when we use static context and set the window size, w to 4,
the algorithm makes 1 mistake out of every 23.16 sentence alignments and out of every
18.72 sentences. If we used the symmetric local context search with local context cho-
sen as the maximum scoring one for the alignment, these numbers change to 22.22 and
17.88 respectively. When we use the average scoring for the symmetric local contexts,
then these numbers become 24.40 and 19.64 respectively and become 23.97 and 19.10
respectively when we use the average of top 5 scores. These results were taken after ob-
serving 118, 123, 112, and 114 mistakes for the static, maximum, average, and average
top 5 local context configuration schemes on the number of alignments and 299, 313,
285, and 293 mistakes for for the static, maximum, average, and average top 5 local
context configuration schemes on the number of sentences. hunalign makes 1 mistake
out of every 18.59 sentence alignments and out of every 13.26 sentences. Moore’s algo-
rithm makes 1 mistake out of every 16.27 sentence alignments and out of every 12.75
sentences. These results were taken after observing 147 mistakes for hunalign and 168
mistakes for Moore’s algorithm on the number of alignments and 422 mistakes for hu-



nalign and 439 mistakes for Moore’s algorithm on the number of sentences. The total
number of alignments is 2733 and sentences is 5596 in all of our data set.

4.1 Results on Sentence Alignment Accuracy

Sentence Alignment Accuracy
Language hunalign Moore static maximum average average top 5

Bulgarian 96.74 / 3.26 96.09 / 3.91 96.09 / 3.91 95.77 / 4.23 96.74 / 3.26 96.74 / 3.26
Czech 96.14 / 3.86 95.82 / 4.18 96.78 / 3.22 96.78 / 3.22 96.78 / 3.22 96.78 / 3.22

Estonian 99.68 / 0.32 98.39 / 1.61 98.39 / 1.61 99.04 / 0.96 98.39 / 1.61 99.04 / 0.96

Hungarian 87.86 / 12.14 88.96 / 11.04 92.98 / 7.02 91.30 / 8.70 93.98 / 6.02 91.64 / 8.36

Latvian 95.71 / 4.29 92.74 / 7.26 96.70 / 3.30 96.70 / 3.30 96.70 / 3.30 97.03 / 2.97
Lithuanian 88.44 / 11.56 82.31 / 17.69 92.18 / 7.82 92.52 / 7.48 91.84 / 8.16 92.52 / 7.48
Romanian 89.86 / 10.14 95.27 / 4.73 91.22 / 8.78 90.54 / 9.46 91.22 / 8.78 92.23 / 7.77

Serbo-Croatian 98.70 / 1.30 97.08 / 2.92 97.73 / 2.27 98.05 / 1.95 97.73 / 2.27 97.73 / 2.27

Slovene 97.70 / 2.30 97.04 / 2.96 98.68 / 1.32 98.36 / 1.64 99.34 / 0.64 98.36 / 1.64
Table 3. Sentence alignment accuracy per English - language alignments

In terms of sentence alignment accuracy, our context based sentence alignment al-
gorithm with static, maximum, average, and average top 5 local context configuration
schemes reduce the error rate of hunalign by 1.2458, 1.1951, 1.3125, and 1.2895 times
and of Moore by 1.4237, 1.3659, 1.5000, and 1.4737 times respectively. The results
represent the comparison in terms of the total number of errors made over all English-
language alignments. The details can be seen in Table 3.

4.2 Results on Sentence Alignment Coverage

Sentence Alignment Coverage
Language hunalign Moore static maximum average average top 5

Bulgarian 95.34 / 4.66 94.86 / 5.14 95.18 / 4.82 94.86 / 5.14 95.99 / 4.01 95.99 / 4.01
Czech 94.92 / 5.08 95.24 / 4.76 96.35 / 3.65 96.35 / 3.65 96.35 / 3.65 96.35 / 3.65

Estonian 99.52 / 0.48 98.08 / 1.92 98.08 / 1.92 98.88 / 1.12 98.08 / 1.92 98.88 / 1.12

Hungarian 84.30 / 15.70 85.90 / 14.10 91.51 / 8.49 89.10 / 10.90 92.63 / 7.37 89.42 / 10.58

Latvian 92.65 / 7.35 90.26 / 9.74 95.37 / 4.63 95.37 / 4.63 95.37 / 4.63 95.69 / 4.31
Lithuanian 84.85 / 15.15 79.15 / 20.85 90.23 / 9.77 90.72 / 9.28 89.90 / 10.10 90.72 / 9.28
Romanian 86.79 / 13.21 93.64 / 6.36 89.72 / 10.28 89.07 / 10.93 89.72 / 10.28 90.86 / 9.14

Serbo-Croatian 97.75 / 2.25 96.46 / 3.54 97.27 / 2.73 97.59 / 2.41 97.27 / 2.73 97.27 / 2.73

Slovene 95.81 / 4.19 95.64 / 4.36 98.06 / 1.94 97.58 / 2.42 98.71 / 1.29 97.58 / 2.42
Table 4. Sentence alignment coverage per English - language alignments



In terms of sentence alignment coverage, our context based sentence alignment al-
gorithm with static, maximum, average, and average top 5 local context configuration
schemes reduce the error rate of hunalign by 1.4114, 1.3482, 1.4807, and 1.4403 times
and of Moore by 1.4682, 1.4026, 1.5404, and 1.4983 times respectively. The results
represent the comparison in terms of the total number of errors made over all English-
language alignments. The details can be seen in Table 4.

5 Conclusion

We have developed a novel language-independent context-based sentence alignment
technique given parallel corpora. We can view the problem of aligning sentences as find-
ing translations of sentences chosen from different sources. Unlike current approaches
which rely on pre-defined features and models, our algorithm employs features derived
from the distributional properties of sentences and does not use any language dependent
knowledge. The resulting sentence alignment methodology is language-independent; it
can handle non-monotonicity and noise in the alignments, it does not require any stem-
ming, or anchors, and it extends the type of alignments available up to 6-way.

The main advantage of Moore’s and Chen’s methods are their employment of the
word translation probabilities and their updates when necessary. It is a custom to feed
previous alignment results back into the aligner to further improve on the results. This
process is generally referred to as bootstrapping and there may be multiple passes
needed until convergence. We can easily improve our model by making use of word
translation models and bootstrapping.

We provide formalizations for sentence alignment task and the context for sentence
alignment. We introduce the notion of Zipfian word vectors which effectively presents
an order-free representation of the distributional properties of a given sentence. We
define two dimensional weight decaying correlation for calculating the similarities be-
tween sentences.

We accept the context to be the frame in which the reasoning about sentence align-
ment is done. We examine alternatives for local context models and developed a system
which dynamically selects the local context for a pair of set of sentences which maxi-
mizes the correlation. We can also further improve our model by using a pre-specified
dictionary, by dynamically building a dictionary, by using stemming, by using a larger
corpus to estimate frequencies and generating Zipfian word vectors based on them, by
using larger window sizes to select the local context size from, or by using bootstrap-
ping which makes use of the previously learned alignments in previous steps.

We evaluate the performance of our system based on two different measures: sen-
tence alignment accuracy and sentence alignment coverage. We compare the perfor-
mance of our system with commonly used sentence alignment systems and show that
our system performs 1.1951 to 1.5404 times better in reducing the error rate in align-
ment accuracy and coverage. The addition of word translation probabilities and models
of word order to our system might give us a better solution to the sentence alignment
problem.
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