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• Analogy Questions and Introduction
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• Word pairs data from text, dataset generation

• Clustering Scoring Algorithm

• Experiments with SAT Questions

• Summary
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Analogy Questions

• Analogy identification is important in question answering.

• In Aristotelian format: hand:palm::foot:sole (same semantic

relations between word pairs)

• Analogy derivation, analogical reasoning, and similarity

judgments take central role in reasoning.

• Many proglems of NLP are related: question answering,

information extraction, word sense disambiguation
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Our Work

• Observation: Semantically related word pairs might be

clustered closely in the vector space model.

• We cast the problem of solving word analogy questions as

an instance of learning clusterings of data

• We devise a heuristic approach to combine the results of

different clusterings for the purpose of distinctly separating

word pair semantics

• We answer SAT-type word similarity questions using our

technique.
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Approach
Assumption: Semantic relations are determined by both the

word pairs and the syntactic patterns that they are observed

with.

• Observe: [ship made of gold] vs. [ship carrying gold].

• We used the dataset from [3] derived by using Waterloo

MultiText System [1] as the search engine.

• Word pairs are represented by the syntactic patterns that

are observable between the words in the pair given a large

corpus.

• The dataset is smoothed by mapping its feature vectors

into a lower dimensional space using SVD.

TAINN 2006 Presentation 5/17



Word pairs data from text, dataset
generation

Input: Set of word pairs, WP , that we are interested.

Each word pair, wp ∈ WP , is represented as w1 : w2 where

w1 and w2 are the two words in the pair.

Steps involved:

1. Identify alternates (wp):
∀wp ∈ WP ,

wp =
⋃

w′
1 : w′

2,

where w′
1 is any one of the top 10 similar senses of the

word w1.
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Steps Involved

1. Identify alternates

2. Select alternates: ∀wp′ ∈ wp,

• Query the search engine for patterns of the form [w′
1 ∗∗ ∗

w′
2], where wp′ = w′

1 : w′
2.

• wp′ = The top 3 most frequent alternate word pairs.

• wp′ = wp′
⋃

wp, where wp is the original word pair.
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Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns: ∀wp ∈ WP, where WP =
⋃

wp′,

• Query the search engine to find patterns of the form:

[w1 ∗ ∗ ∗ w2], [w1 ∗ ∗w2], or [w1 ∗ w2].
• Each ∗ in the pattern can match a word from the corpus.

• Select the top 4000 patterns.
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Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix: ∀wp ∈ WP,

• Create a row and for each pattern w1 P w2,.

• Create a column for w1 P w2 and another one for

w2 P w1 (8000 columns).

• The final matrix, X, X(i, j) = frequency of the jth

pattern that contain ith word pair.
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Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD: X is smoothed by mapping its feature set to

a lower dimensional space using SVD [2] by choosing the

largest 300 singular values. This reduces the number of

columns to 300 instead of 8000. Let this new matrix be

X300.
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Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD

6. Apply clustering: Apply k-means, and spectral clustering

on X300. This provides us with different clusterings (i.e.

allocation of word pairs into disjoint clusters).
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Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD

6. Apply clustering

7. Apply scoring function: The resulting clusterings are

scored and combined to answer analogy questions and to

pick the correct answer from a given set of choices.
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Clustering Scoring Algorithm

Experimented with k values 21, 22, . . . , 28. Each clustering

is an allocation of points to different clusters based on k.

cq = clusters(qwp);
for cluster = 0; cluster < numClusterings; cluster + + do

ns = 0; /* Number of distinct answers in the same cluster as the question */
foreach awp ∈ AWP do

ca = clusters(awp);
if cq[cluster] == ca[cluster] then

ns + +;
end

end
foreach awp ∈ AWP do

ca = clusters(awp);
if cq[cluster] == ca[cluster] then

score[awp] = score[awp] + numofClusters[cluster]/ns;
end

end

end
choice = max(score);

Algorithm 1: Clustering Scoring Algorithm.
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Experiments with SAT Questions

• Tested with 374 college-level multiple-choice SAT analogy

questions.

• 8128 word pairs: (374× 6× 4)− no alternate cases − word

pairs not present in any pattern.

• The average human score is 57%.

• Turney [3] reports a performance of 56% using latent

relational analysis.
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Results with SAT Questions

Alternates k-means Spectral with local scaling

none 41.23% 35.72%
question 44.01% 34.87%
answer 39.95% 35.45%
both 38.50% 32.89%

Performance of clustering methods in answering word analogy

questions. The first column shows whether thesaurus based

alternate word pairs have been used for the question and

answer pairs.
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Summary
• We present an analysis of clustering algorithms’

performance on answering word similarity questions.

• The dataset we have is based on word pairs and their

occurrence frequencies in some common sytactic patterns.

• We cast the problem of solving word analogy questions as

an instance of learning clusterings of data.

• We devise a heuristic approach to combine the results of

different clusterings.

• We answer SAT-type word similarity questions.

• We observe that semantic relations between word pairs may

be distinguished by using clustering techniques.
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