
Clustering Word Pairs to Answer
Analogy Questions

Ergun Biçici and Deniz Yuret

http://www.ku.edu.tr

June 22, 2006

TAINN 2006 Presentation



Today’s Talk

• Analogy Questions and Introduction

• Approach

• Word pairs data from text, dataset generation

• Clustering Scoring Algorithm

• Experiments with SAT Questions

• Summary

TAINN 2006 Presentation 2/17



Analogy Questions

• Analogy identification is important in question answering.

• In Aristotelian format: hand:palm::foot:sole (same semantic

relations between word pairs)

• Analogy derivation, analogical reasoning, and similarity

judgments take central role in reasoning.

• Many proglems of NLP are related: question answering,

information extraction, word sense disambiguation

TAINN 2006 Presentation 3/17



Our Work

• Observation: Semantically related word pairs might be

clustered closely in the vector space model.

• We cast the problem of solving word analogy questions as

an instance of learning clusterings of data

• We devise a heuristic approach to combine the results of

different clusterings for the purpose of distinctly separating

word pair semantics

• We answer SAT-type word similarity questions using our

technique.

TAINN 2006 Presentation 4/17



Approach
Assumption: Semantic relations are determined by both the

word pairs and the syntactic patterns that they are observed

with.

• Observe: [ship made of gold] vs. [ship carrying gold].

• We used the dataset from [3] derived by using Waterloo

MultiText System [1] as the search engine.

• Word pairs are represented by the syntactic patterns that

are observable between the words in the pair given a large

corpus.

• The dataset is smoothed by mapping its feature vectors

into a lower dimensional space using SVD.

TAINN 2006 Presentation 5/17



Word pairs data from text, dataset
generation

Input: Set of word pairs, WP , that we are interested.

Each word pair, wp ∈ WP , is represented as w1 : w2 where

w1 and w2 are the two words in the pair.

Steps involved:

1. Identify alternates (wp):
∀wp ∈ WP ,

wp =
⋃

w′
1 : w′

2,

where w′
1 is any one of the top 10 similar senses of the

word w1.

TAINN 2006 Presentation 6/17



Steps Involved

1. Identify alternates

2. Select alternates: ∀wp′ ∈ wp,

• Query the search engine for patterns of the form [w′
1 ∗∗ ∗

w′
2], where wp′ = w′

1 : w′
2.

• wp′ = The top 3 most frequent alternate word pairs.

• wp′ = wp′
⋃

wp, where wp is the original word pair.

TAINN 2006 Presentation 7/17



Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns: ∀wp ∈ WP, where WP =
⋃

wp′,

• Query the search engine to find patterns of the form:

[w1 ∗ ∗ ∗ w2], [w1 ∗ ∗w2], or [w1 ∗ w2].
• Each ∗ in the pattern can match a word from the corpus.

• Select the top 4000 patterns.

TAINN 2006 Presentation 8/17



Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix: ∀wp ∈ WP,

• Create a row and for each pattern w1 P w2,.

• Create a column for w1 P w2 and another one for

w2 P w1 (8000 columns).

• The final matrix, X, X(i, j) = frequency of the jth

pattern that contain ith word pair.

TAINN 2006 Presentation 9/17



Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD: X is smoothed by mapping its feature set to

a lower dimensional space using SVD [2] by choosing the

largest 300 singular values. This reduces the number of

columns to 300 instead of 8000. Let this new matrix be

X300.

TAINN 2006 Presentation 10/17



Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD

6. Apply clustering: Apply k-means, and spectral clustering

on X300. This provides us with different clusterings (i.e.

allocation of word pairs into disjoint clusters).

TAINN 2006 Presentation 11/17



Steps Involved

1. Identify alternates

2. Select alternates

3. Find patterns

4. Generate a matrix

5. Apply SVD

6. Apply clustering

7. Apply scoring function: The resulting clusterings are

scored and combined to answer analogy questions and to

pick the correct answer from a given set of choices.

TAINN 2006 Presentation 12/17



Clustering Scoring Algorithm

Experimented with k values 21, 22, . . . , 28. Each clustering

is an allocation of points to different clusters based on k.

cq = clusters(qwp);
for cluster = 0; cluster < numClusterings; cluster + + do

ns = 0; /* Number of distinct answers in the same cluster as the question */
foreach awp ∈ AWP do

ca = clusters(awp);
if cq[cluster] == ca[cluster] then

ns + +;
end

end
foreach awp ∈ AWP do

ca = clusters(awp);
if cq[cluster] == ca[cluster] then

score[awp] = score[awp] + numofClusters[cluster]/ns;
end

end

end
choice = max(score);

Algorithm 1: Clustering Scoring Algorithm.

TAINN 2006 Presentation 13/17



Experiments with SAT Questions

• Tested with 374 college-level multiple-choice SAT analogy

questions.

• 8128 word pairs: (374× 6× 4)− no alternate cases − word

pairs not present in any pattern.

• The average human score is 57%.

• Turney [3] reports a performance of 56% using latent

relational analysis.

TAINN 2006 Presentation 14/17



Results with SAT Questions

Alternates k-means Spectral with local scaling

none 41.23% 35.72%
question 44.01% 34.87%
answer 39.95% 35.45%
both 38.50% 32.89%

Performance of clustering methods in answering word analogy

questions. The first column shows whether thesaurus based

alternate word pairs have been used for the question and

answer pairs.

TAINN 2006 Presentation 15/17



Summary
• We present an analysis of clustering algorithms’

performance on answering word similarity questions.

• The dataset we have is based on word pairs and their

occurrence frequencies in some common sytactic patterns.

• We cast the problem of solving word analogy questions as

an instance of learning clusterings of data.

• We devise a heuristic approach to combine the results of

different clusterings.

• We answer SAT-type word similarity questions.

• We observe that semantic relations between word pairs may

be distinguished by using clustering techniques.

TAINN 2006 Presentation 16/17



References

[1] Charles L. A. Clarke, G. V. Cormack, and F. J. Burkowski.

An algebra for structured text search and a framework for

its implementation. The Computer Journal, 38(1):43–56,

1995.

[2] Lloyd N. Trefethen and David Bau. Numerical Linear

Algebra. SIAM: Society for Industrial and Applied

Mathematics, 1997.

[3] Peter Turney. Measuring semantic similarity by latent

relational analysis. In Proceedings of the Nineteenth

International Joint Conference on Artificial Intelligence

(IJCAI-05), pages 1136–1141, Aug 2005.

TAINN 2006 Presentation 17/17



Thank you!

Acknowledgments: We acknowledge the generous

allowance of Peter Turney from NRCC, Canada, for access to

the dataset and Waterloo MultiText System.

TAINN 2006 Presentation 18/17


