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Abstract

Tool use is an important characteristic of intelligent human behavior. Rep-
resenting, classifying and recognizing tools by their functionality can provide us
new opportunities for understanding and eventually improving an agent’s interac-
tion with the physical world. Techniques have been developed in a wide range of
areas within artificial intelligence and other disciplinesto represent and automati-
cally reason about the functionality of tools. This articlesurveys past approaches
to reasoning about functionality in the literature and attempts to give an overview
of the strengths and weaknesses of previous techniques. A number of issues that
needs to be addressed are also reviewed.

Keywords: Functional representation, reasoning about functionality, reasoning
about physical artifacts, robotics, tool use, tool taxonomy

1 Introduction

In popular thinking, tool use rivals natural language as thedefining characteristic of
intelligent behavior. Mazlish writes [1]:

When humans first appear, they are already holding tools. Whatever the evolution-
ary steps leading to this development, our fossil remains are of human and tool
together. Freed from pawing the ground, the released human hand can now hold
a stone axe, that is, shaped stone, which obviously gives an adaptive edge. The
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first reason for tools, then, is that they are part of the process of natural selection,
giving humans an advantage in their evolutionary struggle.

From an artificial intelligence viewpoint, gaining an understanding of tools has im-
portant implications. The development of habile (tool-using) agents has been identified
by Nils Nilsson as one of the key challenges in the future of AI. Representing, clas-
sifying and recognizing tools by their functionality can provide us new opportunities
for understanding and eventually improving an agent’s interaction with the physical
world. In The Society of Mind, Marvin Minsky describes “bridge definitions,” as the
best ideas that can bridge between two different worlds [2].We believe that work on
the recognition of tools for specific uses will lead to bridging explanations to facilitate
researchers’ efforts in bringing robots into the world of human interactions.

Defining tools as physical and functional objects is not as straightforward as it
might seem. If our definition is too specific, we may need to include a large number
of exceptions; if it is too general, we may end up including many things that we do
not want. In the AI literature the example of a chair is often used to illustrate these
problems. One purposeful definition for a chair is “something that you can sit on.”
However, because you can sit on almost anything, this definition is too general, includ-
ing such things as floor, food, and other people. At the same time, a structural definition
such as “a chair has a sit-able structure that is held betweena backing structure and a
legged-support structure not much taller than the legs of a human” is too specific. It
excludes physical objects we might like to include, such as overturned pails and ap-
propriately shaped rocks. Sowa has described this difficulty in terms of an “egg-yolk
theory of word meaning” [3]. The basic idea, related to prototype-based theories in
cognitive modelling and linguistics [4], is that objects most central to a given concept
will be found in the yolk of the egg, while objects that are less similar will be in the
white part [Fig. 1].

We find this a very interesting approach that can help us learnstarting from the
functional representations of sample objects in a domain. We can state the basic ap-
proach as follows, using Sowa’s example from the domain of chairs:

I– Start with a set of example objects (e.g. chairs).

II– Based on some level of granularity, find their common characteristics and
apply these to other objects to find similar ones with the samefunctionali-
ties.

III– If you run out of objects, search deeper into the objectsspace by ignoring
one or more defining characteristics.

IV– Filter these newly found objects according to the updated functionalities
and update all objects accordingly until saturation. Totalnumber of objects
may decrease or increase.

The goals or purpose of the learner are important in answering questions about the
functional similarities of objects. To continue with the example of a chair, we might
ask the learner, which objects are most like a chair? We are implicitly assuming that
the functionality of the chair is uppermost in the mind of thelearner. However, if the
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Figure 1: Egg-yolk theory of the meaning of chair

goal is different (perhaps we want a chair that can be used to wedge a door closed),
then the learner may not be able to make the relevant distinctions because the yolk of
the egg is partly defined by the goals of the learner.

Similarity, however, is difficult to characterize precisely. In the example above,
identifying an object as chair can depend on the goals of the observer, the visual sim-
ilarity of the object to other chairs, the ability of the observer to generalize to past
experience with chairs, and so forth.

As a starting point in organizing the potentially vast amount of information that
might be brought to bear on the interpretation of physical objects as tools, we turn to a
definition from Beck [5]: “Thus tool use is the external employment of an unattached
environmental object to alter more efficiently the form, position or condition of another
object, another organism, or the user itself when the user holds or carries the tool during
or just prior to use and is responsible for the proper and effective orientation of the tool.”
This definition comes from the literature on non-human primate tool use but reflects
human tool use as well. Definitions such as this raise a numberof important issues for
artificial intelligence research; tool use and, generally speaking, reasoning about the
functionalities of physical artifacts depends on the following factors and senses:

• Shape: For many tools, shape is a decisive factor in their effectiveness. For
example, screwdrivers are often sold in sets, in which individual tools vary in
length, thickness, and the shape of the driver head. Phillips head or slotted screws
much be matched by screwdrivers with particular shapes.
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• Planning:Appropriate sequences of actions are key to tool use. The function of
a tool usually makes it obvious what kinds of plans it takes part in. For example,
a mechanic needs to choose the right tool for the job and plan ahead which tools
he will need and which tools he can use in the absence of some others. Also,
proper usage of tools often involves appropriate application of forces in suitable
amounts.

• Physics:For reasoning about a tool’s interactions with other objects and measur-
ing how it affects other physical artifacts, we need to have abasic understanding
of the naive physical rules that govern the objects. We can classify many tools
according to the principles of leverage and lever types. Forinstance, hammer
claws function as a type-1 lever, where the pivot (fulcrum) is between the effort
and the load and therefore the direction of the force changes.

• Dynamics:The motion and the dynamic relationships between the parts of tools
and between the tools and their targets provide cues for proper usage. In the
case of a hammer, for effective use, we need to swing it with a proper angle and
velocity towards the target. By building systems that observe and learn from this
type of experience, we can find proper and effective usage of physical artifacts.

• Causality:Causal relationships between the parts of tools and their correspond-
ing effects on other physical objects help us understand howwe can use them
and why they are efficient. For example, in the case of a hammer, it has a gras-
pable portion and a striking surface that, when used, may cause a distortion on
the objects that it hits. We think that if the striking surface stays intact after the
hit and can be “re-usable” afterwards, then we can use that tool as a hammer.

• Work space environment:A tool needs enough work space to be effectively ap-
plied. A hammer needs swinging room, a screwdriver needs space for twisting.
Finding enough room for a particular tool is closely relatedto spatial planning
and reasoning.

• Design requirements:Using a tool to achieve a known task requires close inter-
action with the general design goal and requirements of the specific task. For
example, if we want to nail a carpet to the floor, we may use a hammer, but we
might instead design a system that involves three hammers which enable us to
nail in one third of the time.

• Common sense:A good understanding of physical objects needs commonsense
knowledge about how to use them and how to match tools with objects that are
available in the environment.

This list suggests that reasoning about the functionality of tools, as well as recog-
nizing and using tools according to their functionalities,requires a cross-disciplinary
investigation ranging from recognition techniques used incomputer vision and robotics
to reasoning, representation, and learning methods in artificial intelligence.

We can structure previous work on approaches relevant to tool use and reasoning
about functionality into two main categories: systems thatinteract with tools and envi-
ronments, and systems that do not. We further subdivide these categories according to
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Non-interactive approaches: These models do not interact with the objects to realize
their functionalities. Most are applications in computer vision.

Functionality = Shape[6, 7, 8, 9, 10, 11]

Functionality = Shape + Causality[12]

Functionality = Shape + Planning[13]

Functionality = Shape + Dynamics[14]

Functionality = Shape + Physics + Causality[15, 16, 17, 18, 19]

Functionality = Common sense theories[20, 21, 22, 23]

Interactive approaches: These models interact with the objects to realize their func-
tionalities. Most are applications in robotics.

Functionality = Shape[24, 25]

Functionality = Shape + Work Space[26]

Functionality = Shape + Physics[27, 28, 29, 30, 31, 32]

Functionality = Shape + Physics + Causality[33]

Abstract approaches: These approaches try to model the functionality of objectsin
general terms, at a level of abstraction above manipulationand perception.

Reasoning about design requirements[34]

Ecological reasoning[35, 36]

Common sense reasoning[37]

Table 1: Approaches to understanding tool use by functionality
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the dimensions of functionality they consider and the complexity of the techniques they
use. Table 1 summarizes combinations that have appeared in the AI literature. Some
of these methods do not necessarily aim to recognize the functionality of an object;
sometimes their sole aim is to recognize objects according to their functionalities or
recognize functionalities according to the objects.

Over the years, reasoning about functionality has attracted attention in many disci-
plines, including (but not limited to) robotics, computer vision, psychology, and artifi-
cial intelligence; with work originating in image recognition and understanding, (spa-
tial) reasoning, representation and learning. In the remainder of this article we review
a number of past approaches to reasoning about functionality and to intelligent use of
physical tools from the literature following the basic organization given in Table 1. We
examine these approaches in categories of interactive and non-interactive systems and
later group them according to the dimensions of functionality and the complexity of
the techniques they credit in increasing the sophistication of their modelling capability.
Also, we discuss the difficulties that emerge and the issues that need to be addressed.

We end with the application of a selection of these techniques to a few represen-
tative examples of tools en route to building a tool-using robot-arm. We believe that
work in the recognition of tools for specific uses will lead tobridge definitions that will
enable researchers to bring robots into the world of human interactions.

2 Non-interactive approaches

Many approaches to tool use, mainly those in the field of computer vision, do not
interact with objects and are limited to the non-contact perceptions to realize the func-
tionalities of objects. This vastly constrains the experiments that can be done with
them, since they are only observers that cannot have any effect on the environment.
Krotkov [29] describes methods that are limited to non-contact perception as super-
ficial, in that they are sensitive only to the surface of the object. Since they cannot
directly measure properties like density or friction, theyare also indeterminate. Never-
theless there is strong intuitive appeal to a non-interactive approach; experienced tool
users can often recognize the capabilities of a tool simply by inspection.

2.1 Functionality = Shape

Models in this category use only the shape of an object to recognize its functionality,
with the idea that the shape of an object specifies its functionality. For example, a
hammer can be defined as a T-shaped object with geometric constraints like the (surface
normal of the) head is nearly perpendicular to the (surface normal of the) handle, and
the handle is positioned near the center of the head.

Solina and Bajcsy [6] represent generic objects by parts, which are modelled by
super-quadric volumetric primitives. Parts are prototypes in that changes in structure
and deformation in the shape of objects are allowed. Each part has a set of features
that are used for selecting models from a model database. Theselected models are
then matched with the part data geometrically. The recognition process deforms each
part of the models to match the corresponding object part andselects the model that
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achieves the best match. This system relies on the assumption that the shapes of basic
object parts correspond to the function of the artifact.

Vaina and Jaulent [7] recognize function by using shape and concept representa-
tions, object categories, and requirements of actions. They propose a conceptual model
of compatibility between objects and their usage in hand actions, based on pattern
matching. The level of conceptual or structural description determines the relationship
between the object structure and function.

Zlateva and Vaina [38] provide mathematical support for theformalization and
computation of the shape structure and its representation for deriving the possible func-
tions of objects. They discuss axis- and boundary-based methods for defining the parts
and subparts of objects. Their method of describing functionality is based on a theorem
from differential geometry, which claims that any regular surface can be approximated
in a finite environment to some given accuracy by a paraboloid. Based on this observa-
tion, they represent convex parts of objects using polyhedra, cylinders, ellipsoids, and
generalized cones.

Zlateva and Vaina attach example functionality-to-structure feature mappings by
using the decomposition of the object into largest locally convex surface patches (LCP).
For instance, the functionality of stability and support needs to have at least three points
that define a sufficiently planar surface that includes the projection of the center of
gravity. The functionality of an action capability such as “can pound” is recognized
by a structure that has an accessible part with a sufficientlyflat surface patch; “can be
rolled” requires that the shape representation at the highest level is cylindrical.

The LCP method applies to 3D objects such as differently shaped wrenches, differ-
ent types of screws and bolts, and various hacksaws [8]. Theynote that the decomposed
parts relate to specific affordances of the object (see Section 4.2 for further discussion
of this concept): a handle to hold, an opening to grasp the bolt, a head to provide sup-
port for the case of a wrench. They also claim that in order to know the use of an object,
we need to infer the proper position of the hands, the direction of the action, and the
pressure to be applied. These cannot be learned without spatial relations between parts
and subparts, which implies that the parts and subparts directly relate to affordances of
an object.

Rivlin, Dickinson, and Rosenfeld [9] extend “recognition by parts” shape recogni-
tion framework to “recognition by functional parts” by matching functional primitives
and their relations with volumetric shape primitives and their relations. They aim to of-
fer an object representation that integrates function and shape, and address the problem
of recovering shape and function data from either 2D or 3D images. The representa-
tion of object functionality and the matching scheme between two layers of primitives
(functional and shape) can be seen in Fig. 2.

In the shape layer, objects are constructed by using volumetric primitives with spa-
tial relations between them. In the functional layer, objects are represented in terms of
functional primitives and relations. The shape primitivesare mapped to a set of func-
tional primitives and the spatial relations are mapped to a set of functional relations.

The shape representation Rivlin et al. used models objects using four classes of vol-
umetric shapes: sticks, strips, plates, and blobs. Their relative dimensions distinguish
these from each other. If a1, a2, and a3 represent length, width and height respectively,
these four classes can be defined as follows:
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Functional
    Relation

Spatial Relation

Shape primitive

Functional primitive

Functional-Spatial Relation Mappings

Shape-Function Mappings

Figure 2: Object representation according to functionality

Stick: a1 ≃ a2 < a3 ∨ a1 ≃ a3 < a2 ∨ a2 ≃ a3 < a2

Strip: a1 6= a2 ∧ a2 6= a3 ∧ a1 6= a3

Plate: a1 ≃ a2 > a3 ∨ a1 ≃ a3 > a2 ∨ a2 ≃ a3 > a2

Blob: a1 ≃ a2 ≃ a3

The functional representation assumes a set of pre-defined functional primitives
such as an end-effector and a handle in the case of a manipulation task and a particular
way that these primitives should be joined together.

Although there may be many shape primitives matching a functional primitive (a
many-to-one relationship) as in the case of chair legs to chair base, for simplicity, this
approach is restricted to object models with one-to-one mappings. Also, by modelling
objects by super-quadrics that support the recovery of occluded parts, the approach
supports reasoning about the functionality of objects thatare only partially visible.

The function-based object recognition procedure supportsboth bottom-up and top-
down recognition. In top-down fashion, the system looks fora given object by mapping
its functional parts to the image, whereas in the bottom-up approach, the system recog-
nizes the object according to the given functional parts. This means that when working
bottom-up, the object recognized can be unexpected or unknown beforehand but while
working top-down, we know in advance what kind of object we are trying to recognize.

In Rivlin et al.’s approach, functionality is defined only interms of the object’s
coarse volumetric parts found through region segmentation. Although they claim that
segmentation gives them the granularity needed for focusing on local object features,
this creates under-segmentation or over-segmentation problems and it relies on opaque
object surface textures. Even after realizing that the relation between function and
structure is many-to-one,1 limiting a system to one-to-one matching seems inadequate.

1Actually, the relationship is many-to-many since many functions can map to different structures as well;
for example, hammering functionality can map to the structure of a hammer, a screwdriver, or even a shoe.
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Kim and Nevatia [10] conduct generic object recognition experiments of desks and
doors on real scenes for robot navigation. The recognition of significant surfaces was
achieved by using the orientation, range of heights, shape,and size of edges in a real
intensity scene image. Their functional representations characterize objects by their
significant surfaces and name the objects that help the system observe the functional
role of another object as “functional evidence.” For example, the functional evidence
of a door consists of objects that are seen through when it is open. Algorithms for
detecting a door frame and the legs of a desk are also given based on the assumptions
that surfaces are planar and objects are in a standard pose.

Li and Lee [11] use accumulative Hopfield matching (AHM) in automatic object
recognition and learning for articulated object models based on a small number of
images. They accept model-based object recognition as the most effective method for
rigid objects but note that if the object is articulated2, its appearance may change
for different perspectives. They claim that recognition methods based on difference
between the actual image and the model encounter problems for articulated images
since the structure changes with changing viewpoints.

Li et al. use many-to-one (homomorphic) attributed relational graph matching for
recognizing both the shape and the structure of objects in images. The angle at the
breakpoints of sub-images and the distance between breakpoints are used as features
for the attributed relational graph representation. Theirmethod randomly partitions
the input image into many sub-images where Hopfield networksare used to derive the
isomorphism mappings between sub-images and models. Theseresults are later accu-
mulated by further iteration until a stable matching is reached. Li et. al. experimented
with various hand tools and keys and were able to find both the objects and the poses
they appear in the images. They claim that their method is extendable to 3D images as
well. Li et. al.’s technique recognizes isolated, recurring, or occluded images invariant
to translation, rotation, scale, or distortion.

2.2 Functionality = Shape + Causality

These models use only the shape of an object as input but rely on causal relationships
and learn these relationships to develop a model of functionality. An early example
is Winston’s work [12] on structural concept learning in theblocks-world domain. To
construct representations of the definitions of concepts inthe blocks world, Winston
used semantic nets. It was one of the first systems that learnsa concept from examples,
learns by imitation, and learns by being told.

In this learning process, the system starts with a structural description of one known
instance of the concept, calling it the concept definition. Through the learning process,
this initial definition is amplified according to positive and negative examples encoun-
tered. This definition is thus called the evolving model. It is generalized by including
descriptions of other instances of the concept and specialized by excluding descriptions
of near misses or negative examples. A near miss is an examplewhich is very similar
to instances of the concept but in fact it is not an instance.

The ANALOGY program [39] of Winston et al. learned the relation between form

2Object consists of rigid components
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and function by using semantic nets [40]. He also used Brook’s object modelling sys-
tem based on generalized cylinders, ACRONYM [41], for physical representations.
The goal was to use functional definitions to identify physical properties and provide an
example system that can learn physical models using these functional definitions [40].

The recognition process of this system involved different steps. At first, the object is
described in functional terms, which is translated into semantic net links. For example,
a cup’s functional description is something like “a cup is a kind of object and open-
vessel and it is stable and lift-able.” Semantic knowledge of “stable”, “lift-able”, and
“open-vessel” are then linked to a cup through causal links.Then the system is given
a physical description of an input object in English, which is sent to the ACRONYM
system for generating the physical model based on generalized cylinders. This model
is later extended with the addition of material properties such as weight and joint loca-
tions. These additional data are physical properties that are impossible to obtain from
a vision system. The system then tries to show that the functional requirements are still
met by the enhanced physical description and identify the object. These functionally
recognized objects’ physical models are later learned in the form of if-then rules. Once
these if-then based physical models are learned, the systemdoes not need functional
requirements for recognizing any new examples of the concept.

2.3 Functionality = Shape + Planning

DiManzo et al. [13] regard functional reasoning as the ability to integrate shape and
function with the help of planning. They describe the difficulty of separating the func-
tion of a tool from the plan it takes part in, since plans and tools evolve together and
differentiate with time. Their reasoning system is based ona hierarchy of levels that
interact with each other. At the top level, they have a task and plan representation that
uses semantic functional descriptors (SFD) and functionalexperts (FE) for planning
based on functionality of objects. The object representation level uses FE’s and ge-
ometric primitives to describe objects. The next level carries out function modelling
by describing some basic functions in terms of geometric primitives, and the last level
performs geometric reasoning by defining geometric constraints.

2.4 Functionality = Shape + Dynamics

These models use the shape, kinematic and dynamic properties of an object (e.g. mo-
tion) to recognize its functionality while the system observes the action that is per-
formed with the object.

Duric, Fayman, Rivlin [14] attempt to derive the function ofan object from its
motion given a sequence of images of a known object performing some action. The
motion analysis results in several motion primitives and these are compared with pre-
viously known motion-to-function mappings. They use both the motion and shape of
an object because many objects display similar motion characteristics in their use.

They constrain the many-to-many mappings between functionand form with the
help of motion. Optical flow measurements are used to derive motion information for
different objects. The relevant motion is in object’s coordinate system and its relation to
the object it acts on (the actee). This relation is importantfor establishing the mapping
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and creating a frame of reference. Thus, the motion is derived independently of the
place of action; whether bread is cut on a table or on a wall, for example, does not affect
the motion. Duric et al.’s experiments deal with three cutting actions: jabbing, stabbing,
and chopping. They also consider two different functionalities of the same object:
scooping and hitting with a shovel and hammering and tightening with a wrench.

Duric et al.’s approach gives a promising path for learning through observing the
motion of objects. A robot capable of seeing and reasoning about the function of an
object serving in an action can later recognize and apply other tools that can handle the
same function better than the observed one.

2.5 Functionality = Shape + Physics + Causality

Approaches in this category are some of the most comprehensive in attempting to
model the functionality of tools. They incorporate all of the factors discussed up to
this point: shape, physics, and causality.

Brady et al.’s system [15], “Mechanic’s Mate”, is intended to assist a handyman in
generic construction and assembly work and to reason about tools. They investigate
the interaction among planning and reasoning, geometric representation of the shapes,
and qualitative and quantitative representations of the dynamics in the tool world. Ac-
cording to them, robots need detailed geometric models while dealing with the real
world, so understanding of geometry needs to be connected with the understanding of
naive physics of forces and causation. Also, by focusing on ahigher order geometrical
representation and their functional interpretation, theyobtain a computationally more
tractable system.

One of the planning tasks a mechanic needs ischoosing the right tool for the job.
The generic concept of a tool and functional and geometric variations helps us distin-
guish one tool from another. If we want to drive tacks into soft wood and if we have
only a sledgehammer, then we might search for another objectwith a flat section that
can be used as a striking surface like the handle of a screwdriver. This is very similar
to finding the optimal solution for a task with the given functionalities of objects in the
environment. If we cannot find the optimal tool for the task, we pick the second best
tool that can handle the same job.

Changing the direction of forces, torques, and impulses (lever and fulcrum, pulley,
cam) and devising plans to transmit forces between parts (links, gears, lead screws) are
two main problems that arise in Mechanic’s Mate. To solve these, Brady et al. give the
general description of sample tools and try to apply them to the problem of peg-out-
of-hole. They later give some of the naive structural regularities of objects’ shape in
the physical world and give some generic knowledge about their usage such as “a saw
blade is moved in the direction of its edge.” With these heuristics, they also identify
ways to use these tools properly or broaden their applicability.

Connell and Brady’s system [16] learns shape models from two-dimensional ob-
jects by using a substantially modified version of the ANALOGY program [39] that
Winston et al. used [40]. ANALOGY learns the relation between form and function by
using semantic nets that learned the generalized structural description from a sequence
of positive examples by using 2D images. The system uses the technique of ablation
and learned concepts from disjunctions. Their primary motivation is to understand the
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connection between planning and reasoning about tools and the representations of the
objects’ shapes or, in other words, the relation between form and function.

Connell and Brady try to find innovative solutions to construction problems by us-
ing tools that were designed for other purposes in a novel way. Instead of learning that
a specific geometric structure is a hammer, their system infers that something with a
graspable portion and a striking surface can be used as a hammer. They define these
two functional concepts geometrically in terms of shape descriptions. Such as, agras-
pable portionis something that has a spine that is straight and elongated,and sides that
are only slightly curved and astriking surfaceis an end of a sub-shape that is blunt and
that is parallel to the spine of the handle. Connell and Bradytaught the functionality
of a hammer by defining the grasping and striking requirements accordingly, and then
showing it examples of graspable objects that has striking surfaces. The program is able
to improvise by taking advantage of having a functional description of a hammer (func-
tional improvisation). Thus, given a hammering task without a hammer, they were able
to match the functional description of a hammer to any other available tool. A close
match to the geometric form of another tool implies that it can be used as a hammer by
grasping the handle matched to the graspable portion and striking the matched striking
surface. Also, Connell and Brady admit that with the structural recognition system they
have, the descriptions of even simple shapes typically comprise between fifty and three
hundred assertions [16]. In the example given, they represent a tack hammer with 51
associative triples.

Hodges developed EDISON system [17] in an effort to imitate the human device-
using process: match context and object applicability, experiment to see if the object
will work, recognize behavior through these experiments, and use experience to pre-
dict the function and behavior of new objects. The system’ s goal was to represent and
manipulate problem-solving situations that require mechanical device use by apply-
ing behavioral, functional, and intentional reasoning. EDISON supported mechanical
improvisation by applying the notion of functional equivalence from mechanical prim-
itives (MP) of devices in different situations.

Later, he explored the relationship between the physical properties of an object, its
functional representation, and its use in problem solving with his Functional Ontol-
ogy for Naive Mechanics (FONM) model [18]. FONM representation theory identifies
causal relationships between device structure, behavior,function, and use with its in-
terdependent abstraction layers. Device statics representation describes the device at
rest with states (geometric, material, and kinematic properties), regions (object shape,
size, and location), relationships, and processes. Devicedynamics explain what would
happen when the device is perturbed with behavioral primitives (motion, restrain, trans-
form, store, and deform), and device pragmatics layer describes how and why the de-
vice is used with device use plans. Hodges claimed that usingMP-equivalence and
appropriate contextual knowledge might solve the problem of mapping attributes to
function with the vision research on object recognition.

Brand [19] built a system using causal and functional knowledge to see, under-
stand, and manipulate scenes. Understanding a scene’s causal physics demonstrates
how scene elements interact and respond to forces and shows the scene’s potential for
action. Brand asserts that systems that use inferences based on connectivity and free
space to model a scene’s causal structure display desirableproperties such as intelligent
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control of the focus of attention and understanding of the scene’s potential for action
and manipulation.

2.6 Functionality = Common sense theories

These systems try to model physical objects and their functionalities by using the com-
mon sense knowledge of shape, physics, and causality together with naive physical
information. With naive physics, we mean the formalizationeffort that Pat Hayes’s
naive physics manifesto [20] anticipated and the efforts towards implementing physi-
cal reasoning at the common sense level. This type of naive, commonsense physical
knowledge that Hayes talks about is needed to build practical systems that are able to
reason and interact with the everyday world around them. Also, DiManzo et al. [13]
mention that the relation between shape and function is dependent on the dynamic
representation of the world, which can be given in terms of naive physics models.

Davis has done considerable amount of work [21, 22, 23, 42] towards formalizing
the physical world of objects through commonsense naive physical knowledge and has
asked an instance of daily physical reasoning problems thatled to solutions [43, 44, 45]
for his famous problem of egg-cracking.

One of Davis’s efforts deals with formalizing the kinematics of cutting solid ob-
jects [22]. He shows the geometric aspects of various cutting operations: slicing an
object in half, cutting a notch into an object, stabbing a hole through an object, and
carving away the surface of an object. He also gives a list of geometric relations be-
tween the shapes and motions of the blades and targets. For example, he suggests that
a blade needs to be sufficiently thin and hard but he does not discuss its elasticity or
sharpness. In one representation, Davis [22] views the object as gradually changing
its shape until it is split; when the original object no longer exists and two (or more)
new objects form. The alternative representation focuses on chunks of material of the
overall object. Until a piece from it is cut away, a chunk exists and preserves its shape.
Davis also shows that these two theories are sufficient to support some simple com-
monsense inferences and algorithms.

Davis [23] claims that understanding the relation between the shape of an object
and its functions through physical reasoning depends on spatial knowledge and spatial
reasoning, which is difficult to express. For example, even if we know the shape of a
screw and understand the relation between its shape and its functions, it is not easy to
describe or explain these without using a technical vocabulary that is incomprehensible
for most people.

As Davis suggests [42], real-time correct reasoning about physical systems is most
of the time unnecessary because physical objects go througha series of unimportant
mode transitions. He gives predicting the exact behavior ofa rigid block falling down
from a table as an instance. Instead, he proposes a commonsense reasoner that is
concise and close to the mode of transitions in between physical states.

Davis’s work pulls together many of the separate ideas in thesystems discussed
above in an attempt to impose a useful conceptual framework on work in this area.
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3 Interactive approaches

Non-interactive methods are very helpful in recognizing candidate objects and disam-
biguating others. However, the resulting representationsare not entirely trustworthy,
since the proper usage of an object is usually highly dependent on interaction. The
models described in this section, most of which are applications in robotics, interact
with objects to recognize their functionalities. Haptic exploration, grasp planning, and
physical perception through observing changes in objects that are physically distorted
are some of the techniques used in this area.

3.1 Functionality = Shape

These models use only the shape of an object to recognize its functionality. The shape
of an object can be represented in different ways using different knowledge such as the
geometry of the object and the spatial data about it.

Allen’s work [24] tries to determine the attributes of 3D objects, especially shape,
through haptic exploratory procedures (EPs). He built an intelligent robotic system that
can recognize shape from touch sensing and supported it witha vision algorithm for
autonomous shape recovery. The system uses previously found EPs that can reach
a success rate of 96-99% in identifying object properties using haptic exploration.
Allen used grasping by containment, lateral extent and contour follower perception
techniques to obtain super-quadric surface representation, face-edge-vertex model and
generalized cylinders of objects correspondingly. He interpreted each representation
acquired from EPs as a constraint system that can be used to understand the input
scenes. Allen identifies the usage of multiple representations for shape as a key com-
ponent of any working system.

Stansfield [25] presented a model and an implementation of a robotic haptic sys-
tem based on human haptic exploration and information processing. They used the
exploratory procedures (EP) that were studied in previous psychological studies of hu-
man haptics such as using pressure to grasp hardness, staticcontact for perceiving tem-
perature, and unsupported holding for measuring the weight. Furthermore, the robot
contained structured-lighting vision and an expert reasoning system performing ob-
ject categorization and grasp generation. The interactionand manipulation procedures
added to their robotic system enhanced the perception capabilities of a robot.

3.2 Functionality = Shape + Work Space

These models use the shape of an object with the workspace it requires for working
properly to recognize its functionality.

To apply a given tool, Wilson [26, 46] measured geometric accessibility constraints
in the placement volume relative to the other objects where the tool operates. He found
out that determining whether a tool can be applied in a given assembly state is an
instance of the FINDSPACE3 problem [47]. This spatial planning problem can be
more formally defined as:

3Wilson names this problem as the FINDPLACE problem.
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Determine where an object A can be placed, inside some specified
region R, so that it does not collide with any of the objectsBj already
placed there.

For an object that is represented as a single point in configuration space, the configura-
tions forbidden to it due to other objects can be specified as regions, which are called
configuration space obstacles [47].

Use volumeis the minimum free space needed for a subassembly to apply the tool
and placement constraints determine where the volume needsto be placed relative to
the reference point, which is at the position of required tool use. The placement of the
use volume according to the placement constraints is an instance of the FINDSPACE
problem [47].

Through this work, Wilson [26] tries to answer questions of the form, “Is there
space for this tool to be used?” He also mentions that in a real-world usage of a tool,
there will be more issues that needs to be addressed, such as finding the space required
for a human or robot arm to grasp the tool, choosing the best tool among feasible ones,
finding an optimal tool-level plan, designing new tools, anddealing with changes that
might allow a tool to be used.

3.3 Functionality = Shape + Physics

These models use the shape of an object plus the rules of physics that govern their
interactions with each other and the environment to recognize its functionality.

Far [27] introduces a functional reasoning technique called Qualitative Function
Formation (QFF) that views system structures as an organization of finite number of
interacting component pairs and derived the function from qualitative behavior. QFF
assumes that at least a pair of components is required to interact functionally (function-
ality in item pair) and interprets a function either as persistence or as an order in the
sequence of qualitative states (functionality in state transition). The technique extends
some qualitative models by including temporal constraintsand physical interaction.

Krotkov [29] tries to perceive material properties by actively contacting and prob-
ing them and later sensing the resulting forces, displacements, sounds. This kind of
perception ability is essential for a robotic system to understand not only where the
objects are and how they look like but also what they are made of.

The senses of a robot are divided into two groups: non-contact and contact based
sensing. Krotkov claims that although there are many non-contact sensing methods
available (such as surface luminance for finding coefficientof friction or using thermal
images for estimating the granularity of objects), determining the material composition
of an object in a reliable way requires contact with it. Similarly, humans practice this
physical exploration by pressing on, poking, tapping on, hefting, squeezing, shaking,
rubbing or striking on the objects.

Krotkov observes that non-contact methods are superficial because they are sen-
sitive only to the surface of the object and indeterminate since they cannot directly
measure properties like density or friction. He extended the acquisition of material
properties by procedures like “whack and watch”, “step and feel” and “hit and listen.”
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According to Krotkov, perception of material properties will benefit reasoning about
object functionality and also other potential applications. With the material properties
that can be added to the reasoning process, we can recognize that a hard-heeled shoe
could be used as a hammer.

Bogoni and Bajcsy [28] implemented a robotic system that recovers shape and ma-
terial properties and observes the interactions, to establish the functionality of a tool.
In the system, there is a compliant wrist that explores toolsbased on their features. The
description of the task is formalized using a discrete eventsystem [48]. There are two
sensors used: force and end-effector position sensor. Later Bogoni and Bajcsy [49]
introduce a formalization of a representation for functionality that is recovered through
classes of force profiles identifying the dynamics of the interaction. They did not use
the shape of the object itself for the recognition of the object prior to interaction. They
investigated manipulatory interactions that emphasize the verification and recovery of
the material properties of an object, using exploration techniques. One of those inter-
actions, piercing, was tested to reveal if the object is capable of piercing.

They claim that generality of the functionality is dependent on the properties as-
sumed. Therefore, inclusion of various properties in object representation both ben-
efits the acquisition of properties and addresses the aspects of functional recognition
and representation. Although their approach is limited to tools employed in simple ma-
nipulatory interactions, they are able to extend the functionality research by (1) using
different sensor modalities for the acquisition of properties, (2) incorporating various
material properties as part of the representation, (3) using interaction for verifying,
acquiring, and describing the functionality of an object, and (4) extracting functional
features for future interactions and functional recognition.

Bogoni [31] adds contextual information to the previous efforts. He defines func-
tionality as the application of an object in a specific context for the accomplishment
of a particular purpose. Thus, he considers the modality of the operation, which is
reflected by the task description and context of application. The modality is the re-
sult of using different sensors for the recovery of materialand functional properties,
where uncertainty and noise can be added from sensors. In hiswork, models try to
reason bottom-up by acquiring the properties of the objectsthat are investigated and
by extracting the functional relations between parts. Thisdecreases the need to make
assumptions about object properties. Also, by focusing on the acquisition of basic
properties from analyzing functionality, Bogoni aims to create a repertoire of primitive
functional procedures.

Stark and Bowyer’s GRUFF [32] is a function-based object recognition system that
recognizes objects by classifying them into categories that describe the functionality
they might serve. It stands for “Generic Representation Using Form and Function” and
uses boundary surface descriptions to derive previously defined knowledge primitives
such as relative orientation, dimension, stability, proximity, clearance, and enclosure.

The system is based on computer vision techniques for recognizing functionality,
and tries to achieve interactive recognition ability by observing the deformations that
happen on objects. In the last section of their book [32], Stark and Bowyer demonstrate
how to acquire physical and shape properties by analyzing the simulations of object
interaction using an object dynamics modelling system named ThingWorld [50]. The
interaction was achieved by observing the deformation of objects made of rubber or
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oak from chair category while forces were applied. In a laterwork [51], they give
the sequence of steps involved in function verification through planned interactions.
First, they change the orientation of the object and check for stability. If the object
passes this test, they apply force and then test again. Further tests are done by applying
force or changing the orientation and checking for deformation afterwards until the
association measure for the object shape stabilizes below (object failed the test) or
above (functionality is verified) a threshold.

The system uses ThingWorld [50] to model the dynamics of the objects and to gen-
erate planned interactions to verify the suggested functionality of objects. Function-
based recognition is used to recognize object categories and their functional require-
ments. This provides both a high level abstraction for representation and an association
of function to the structure.

GRUFF’s knowledge primitives are based on geometrical, causal and physical con-
straints such as a chair should be able to maintain functional orientation after being
seated. To acquire these properties, they use simple operators such as apply force and
observe deformations, which results in apseudo-interactivesystem. However, these
type of physical constraints exclude chairs that change their shape whenever they are
seated such as a beanbag chair. But still, this simple operator can provide as an exam-
ple of how we need to recognize the functionalities of physical objects in their physical
world.

Functional properties are defined in terms of knowledge primitives. For the func-
tionality of “provides X handle”, testing the dimensions and the clearance near the
object is needed. Green et al. take a comparable approach [30], in which kinematic
properties are investigated where the corresponding functional representation for scis-
sors and chairs is given.

3.4 Functionality = Shape + Physics + Causality

Models in this category use representations of dynamic physical relationships and
shape to recognize the functionality of tools. The recognition process is enhanced
by the consideration of causal relationships between objects, such as the predictable or
observable effect on some target object by carrying out an action with a tool.

Cooper et al. [33] describes a set of programs that attempt toconstruct causal ex-
planations of scenes by focusing onwhy the scene is the way it is andhow an agent
can interact with it. This causal explanation later forms a basis for functional descrip-
tion of scene elements. They focus mainly on the causality ofsupport, the causality of
objects in static equilibrium. They also show how causal descriptions can be exploited
to physically interact with the scene. The solutions they offer can be applied to many
other problems including occlusion, focus of attention, and grasp planning.

They see function asa match between tool and intentionand believe that function
arises when the physical configuration of an object permits the object to be used to
satisfy a goal. Causal reasoning can evaluate this match by understanding both physical
and intentional relationships.

They created three different systems. BUSTER (Blocks UnderStander That Ex-
plains its Reasoning) explores and explains blocks world and Fido “sees around” oc-
clusions by using the knowledge of static stability and segmenting scenes of link-and-
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junction objects. The MugShot system understands how and why to interact with and
pick up objects with handles.

3.5 Discussion

Generally speaking, relying on only the shape of an object for reasoning about its func-
tionality is limited. The interaction between tools and humans is affected by how we
use them, and the proper usage of an object is usually highly dependent on interaction.
Objects can have different potential functionalities and we can only be sure about which
one they are using by observing their behavior. Stahovich, Davis, and Shrobe [52] see
this problem and attempt to come up with a large-scale, fundamental ontology for me-
chanical devices that is organized around behavior, not structure. Even if they give the
structural definition of a lever as “a rigid bar with a pivot that can rotate,” unless the bar
is used to amplify the force, they accept it as a beam, not a lever. They also claim that
a causal explanation is needed for differentiating betweenthe actual and the possible
behavior of a tool.

It is not clever to try to recognize tool functionalities by just looking at tools; since
we do not use them by looking (except in the case of a mirror). An agent that is in-
terested in learning how a tool can be used either needs to look for the changes it
can achieve in the physical world by using the tool or be awareof the rules govern-
ing the creation of those tools. This way, tools are no longernamed specifically as
hammer but asa-tool-that-can-increase-my-abilities-of-striking-objects- by-using-the-
governing-rule-number-X.

Therefore, we need to search for where these tools come from and what is the
underlying functionality that we achieve while using them.For example, we can think
of a hammer as a tool that changes the direction of the force and the momentum applied
to it and we can figure out that its functionality is based on the basic functionality of
a lever4. The human body has itself many levers; for this reason classifying tools
according to their lever types seems appealing.

The criterion of success we are going to accept for a system isalso a question of
concern. Given that we have a system that can reason about functionality, how do
we know that it is functionally aware enough? What are the adequacy constraints?
Can we say that a system that can use a screwdriver as a hammer is functionally more
intelligent than a system that suggests the usage of a towel instead of a wrist pad? Since
there may be various dimensions along which some reasoning technique that a system
is based on, becomes limited, and since one can always preferone system to another
given better performance along a dimension, defining a precise notion of the degree of
functional intelligence for different systems may be difficult.

4(from www.m-w.com): a rigid piece that transmits and modifies force or motion when forces are applied
at two points and it turns about a third; specifically : a rigidbar used to exert a pressure or sustain a weight
at one point of its length by the application of a force at a second and turning at a third on a fulcrum.
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4 Abstract approaches

Finally some models try to realize the functionality of objects without any preference
towards interactive or non-interactive systems. These tend to take a more generalized
view of the problem, abstracting above the level of perception and motor action, while
still attempting to represent the core aspects of the tool-using process.

4.1 Reasoning about design requirements

According to Freeman and Newell [34], humans ubiquitously tend to reason in terms
of functions. We name things according to their functions: amachine for washing
clothes is called a “washing machine.” In their paper, they are not really interested in
recognizing objects in terms of their functionalities but designing objects and abstract
systems like computer programs that have the desired functions. They give a qualitative
model for the task of designing in terms of functions.

In the given model, they assume a set of propositions for the set of structures and
a set of functions of a design task environment. They talk about functional connec-
tions that occur between structures that provide functionality to each other and how a
new structure can be constructed from a set of structures. The propositions they make
can also serve as a model for reasoning about functionality of object parts and how
structures can be combined into new structures.

They try to answer the generic design problem:

Given a set of structures and their functional specifications, construct a struc-
ture with desired functional properties.

They examine the aspects and the framework of automated design systems with an
example of qualitative design: a symbol table in computer systems. The design meth-
ods that can be used can be summed in two different groups: top- down or bottom-up
methods. In this context, top-down methods start with the desired functions and try to
find the structures that provide them, binding the design as little as possible. Bottom-
up methods start with the structures available and construct larger structures until the
desired functionality is reached. Freeman and Newell’s work [34] is the first system
that attempts to explore the field ofautomated functional reasoning.

4.2 Ecological reasoning

This work aims to model physical objects and their functionalities by using the com-
mon sense knowledge of shape, physics, and causality together with naive physical
information. In addition to that, they try to interact with objects with the belief that
interaction is an important part of functionality.

St. Amant’s ecological perspective [35, 36] and their efforts of building a robotic
system that can reason about the functionality of tool use isthe only example in this
area that we know of. St. Amant describes an explicitly ecological approach to under-
standing the nature of tool use. He cites the research in non-human primate cognition
that emphasizes behavior in defining tool use:
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Tool use involvesdirect action. A striking action with a stone, with the goal of
cracking open a nut, is an example of tool use. Tool use oftenamplifies existing behav-
ior. Using a stick to extend one’s reach is a common aspect of tooluse in experimental
settings and in the wild. Tool use isgoal-directed activity. Sometimes desirable ends
are achieved through the incidental or even accidental use of an object, which is not
considered a tool in that case. Tool use involveseffective behavior.

St. Amant also gives a taxonomy of tools according to their intended usage:

• Effectivetools produce a persistent effect on materials or the environment, such
as hammers, saws, screwdrivers after tool use is terminated.

• Instrumentsprovide information about materials or the environment. Instru-
ments include measuring tapes, calipers, microscopes and magnifying glasses.

• Constrainingtools constrain or stabilize materials or the environment for the
further application of effective tools. Examples are clamps and rulers.

• Delimiting/demarcatingtools demarcate the environment or materials, as when
a carpenter uses a pencil to mark a piece of wood, or when a designer uses
pushpins or labels on a drafting table.

Many tools fit into different categories at the same time. A pair of pliers, for exam-
ple, constrains the material it grips, but also can be used asan effective tool, to pull on
or twist the material.

St. Amant later gives a taxonomy of tools according to their ecological nature:
Tool use can beopportunistic. Tools can be used for purposes not intended by their
designers and conversely, an object can be used as a tool evenif it was not designed as
a tool initially. Toolsprovide rich cues about their appropriate use. The affordances
of a tool become obvious in its use. Tool useinvolves establishing and exploiting
constraints(between the user and the tool, the user and the environment,and the tool
and the environment).

One might wave a saw or a hammer in the air, for example, or twist a screwdriver
randomly, as a young child might do. Effective use, however,requires the establish-
ment of a constrained relationship between the tool and the material it acts on.

Tools haveaffordances: designed relationships between their physical/dynamic
properties and the properties/abilities of their intendedusers. Physical affordances,
closely related to constraints, are mutual relationships that involve both the agent and
the artifacts it manipulates (and the environment it operates).

The constraints that are relevant in the use of a tool fall into different categories,
which would include the following:Spatialconstraints describe the spatial relation-
ships associated with a tool and its use in an environment. For example, to use a
hammer one needs enough room to swing it.Physicalconstraints describe physical re-
lationships in the use of the tool, such as weight or size.Dynamicconstraints describe
movement- or force-related properties of tool use. For example, one needs to swing a
hammer with appropriate speed in its use.
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4.3 Commonsense reasoning

Commonsense reasoning is a promising technique that concentrates on formalizing
and finding computational models of how humans reason and think in a sensible way.
Minsky [53] believes that users have powerful “commonsense” knowledge that helps
them correctly predict the behavior of functional objects on the screen. He claims that:

“The secret of what X means to us lies in how our representations of
X connects to the other things we know.”

He also mentions the need for classifying objects accordingto what they can be used
for or which goals they can help us achieve [54].

CYC [37] is a very large, long-term effort to formally represent commonsense
knowledge we have in almost anything. The knowledge stored in this expert system
in commonsense worldis shallow and wide and does not go into many physical details.
So, its definitions can be categorized as high-level purposeful definitions.

4.3.1 Representation in CYCL

CYC’s high-level purposeful definitions are organized around micro-theories (Mt) that
bundle a set of assertions based on (1) -a shared set of assumptions on which the truth of
the assertions depends, or (2) -a shared topic. EachMt is a set of abstract concept defi-
nitions and assertions for representing a domain5 in CYC. Specialized micro-theories
depend on more general micro-theories from which they inherit assertions.

OpenCYC6 is the open source version of CYC technology. The knowledge base
available is very limited. A specialized micro-theory of human activities is the only
context that the use of some tools is mentioned. The knowledge is hardcoded, and
thus the abilities of tools are limited to what they are supposed to. The “HumanAc-
tivitiesMt” assumes that the people are rational but not innovative in using tools; tools
are used for their intended purpose and functional improvisation such as using a credit
card to unlock a door is not represented.

In the current CYC system, CycL [37] is used as the representation language. This
is an extended version of the language of first-order predicate calculus (FOPC). We im-
plemented the representation of tool use in CycL according the ecological perspective
described in Section 4.2 as follows:

(and
(requiresForRole ?TU ?A deviceUsed)
(or (isa ?A PurposefulAction) ;goal-directed activity

(isa ?A ActionOnObject)) ;direct action
;amplifies existing behavior
(requiresForRole ?TU ImprovementEvent deviceUsed)
(isa ?Tuser Animal)

(thereExists ?Tuser (beneficiary ?TU ?Tuser))
)

5Technical sense of context
6At www.opencyc.org.
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We created a ToolUse micro-theory by using the OpenCYC system that is running
on a Linux OS. However, the system’s inferential abilities are restricted in the current
version, which prohibits us from deriving conclusions thatinvolve multiple micro-
theories and their physical constraints. For example, if weare to achieve functional
improvisation by using CYC, we need to be able to infer that anobject that has a
graspable portion and a striking surface can serve as a hammer.

Even though inferential problems are solved in the newer releases of OpenCYC, its
compatibility with a robotic system that will interact witha physical environment as
well as its efficiency in transmitting and executing those inferences in a timely manner
is questionable. Also, the inability to make any additions to the inference engine is
another concern.

There are still a couple of problems that face a scientist using CYC. To represent
any concept in OpenCYC, we first need to find the micro-theory that it belongs to.
Therefore, we need to have an idea of what each micro-theory is about, what they
contain and what are the conceptual relationships between them. If you consider the
amount of knowledge encoded, it becomes more obvious that you need considerable
amount of time to realize where your concept belongs to.

After this first step, you may conclude that the system does not have enough knowl-
edge to represent your concept (either because it is really not encoded yet or because
you have not found the possible7 micro-theory) and end up creating your own; just as
we did in the case of ToolUse. Another problem occurs when we try to define each
of the ecological requirements of tool use since they contain subjective concepts like
“beneficial.”

In addition to that, the micro-theories that we use (either for the whole concept or
its subparts) may be either more general or more specific thanwhat we want to cover.
So, to overcome the mismatch in the semantic granularity of these definitions, you end
up creating your own micro-theories by using more and more basic ones. It is very
likely that you are either forced to use cyclic definitions orresolve to infinitely deep
chain of micro-theory creations.

In the end, our previous egg-yolk theory of the meanings about the functionalities
of objects end up being vague and the only way to know that you cover the objects in
your micro-theories is by creating them as instances in an appropriate (“impossible”)
micro-theory. So, you end up doing “armchair engineering” rather than conducting
empirical experiments in your physical world.

5 Issues

There are other issues that still needs to be addressed aboutfunction based reasoning.
We will try to address these as much as we can here.

7Not correct since we believe that it is nearly impossible to find the correct micro-theory for your concept.
This is because the concepts already in the system and the oneyou want to represent do not match each other.
Even if they do match and it is represented the way you want to use it, it may be implemented or interpreted
in a different way. Also, since the knowledge base of OpenCYCis not complete and may have discrepancies
with the original CYC, which is proprietary, the trust in it is questionable.
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Figure 3: Needle in a haystack

5.1 Function-based Reasoning: Constraint Programming or Plan-
ning or Common Sense Reasoning?

Function-based reasoning can be seen as a constraint satisfaction problem where func-
tional descriptions constrain structure or structure constrains functional possibilities.
The mappings available between form and function are actually many-to-many and re-
covering an object by matching previously recognized ones’functionalities experience
combinatorial growth. Model-based recognition has been thought as a solution.

Another view can consider reasoning about functionality asa planning module that
is composed of helper procedures for recognition. In this view, the functional descrip-
tion is done at a higher level, discarding the complete representation. A complete
representation of physical world could attempt to represent the forces governing the
universe and reach from gravitational forces between planets to forces between chem-
ical compounds and atoms.

Freeman and Newell [34] claim that the uniformity of functional reasoning across
all domains results in amodel-independentreasoning technique that adapts according
to the needs of the reasoner, not the domain. Humans find many ways to represent
problems and knowledge so that if one method fails, they havethe ability of switching
between them. Minsky [53] accepts commonsense reasoning asa domain-independent,
adaptable scheme that switches between representations instead of looking for the best.
In this sense, function-based reasoning is similar to commonsense reasoning.
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As Fig. 3 implies, reaching the optimum tool use may sometimes be like finding
a needle in a haystack. Selecting the most effective reasoning technique in tool use,
or relying on a combination of previous techniques, is one ofthe issues that needs
further investigation. Fig. 3 also implies that it is possible to find an arrangement
where the set of constraints do not conflict with each other. Yet, the constraints in an
environment frequently make conflicting assumptions whichmay make it impossible
to find an optimal tool use region.

Therefore, a robot will need to have a set of preferences thatwill enable it to find a
compromise between and choose among constraints when needed. Then, the decision
of which constraints to relax and which ones to follow will bemade based on the
expected gain overall.

5.2 Top-down or Bottom-up?

The functional recognition process can be broken down into two types of methods: top-
down and bottom-up. This division assumes that the problem we are facing is a search
problem. Given the functional classifications, top-down methods start with the desired
functions and try to find the structures that provide them, constraining the model as
little as possible. Bottom-up methods start with the structures available and construct
larger structures until the desired functionality is reached. That’s why in the bottom-
up methods, the object recognized is unexpected or unknown beforehand but in the
top-down approach, we expect what kind of object we are trying to recognize.

Tools as well as objects in general can be recognized and reasoned about in a top-
down fashion, based on conventions for their construction and designers’ intentions
for their use. For example, if an amateur mechanic is workingunder his car and has
no appropriate tools for a hammering task within reach, the nearest object to hand can
become a hammer. The assessment that an object can be used as ahammer is based on
its heft, its grasp-ability, its solidity, and so forth, rather than on the imposition of an
external categorization.

Clearly tools can be recognized and reasoned about in a bottom-up fashion, based
on their physical properties and potentially on the observation of their use. For ex-
ample, hammers conventionally have a long handle and a protruding head with a flat
surface. A carpenter in search of a hammer on his workbench does not need to reason
about the functionality of all the objects within sight, butinstead can simply search for
objects that have the general visual appearance of a hammer.

Consequently, the dilemma boils down to the question of: Arewe trying to match
some known models that are supposed to give some known functionalities to our ob-
jects, or are we trying to find those models that may support some functionalities we
seek? How much spatial reasoning do we need to come up with to satisfy the criterion
of functionality? As is reflected in much of the preceding work, effective reasoning
about tool use must rely on a combination of top-down and bottom-up reasoning. How
to combine them effectively also remains for future research.
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5.3 Gestaltian “demand character” versus Gibsonian “affordance”

Psychologists have two different perspectives about the ecological existence of ob-
jects. On one side, they claim that the use of objects can be directly perceived as it
is supported by the idea of demand character of Gestaltians.Objects have a demand
character that demands an action and rejects others. On the other hand, they believe
that the properties of an object can indirectly determine how it can be used with the
idea of affordances described by Gibson [55]. The affordances of an object are the
properties that it offers and, the values and meanings of these to the environment can
be perceived by looking at what it affords.

The difference between these two approaches can be more obvious with an exam-
ple. A Gestaltian will think that a hammer is meant for hammering whereas a Gibso-
nian will claim that with its striking surface and its graspable handle, a hammer affords
hammering.

5.4 Frame Axioms and the Frame Problem

Dynamic state of the real world forces a robot to model all of the actions that can
modify its own or its environment’s state. This is called theframe problem since we
are monitoring the environment through the window or frame of all of the actions we
think that will effect the conditions (relevant actions), which will result in a reaction in
the robot’s sense-plan-act cycle.

Frame axioms describe how the world stays the same rather than how the world
changes. Each predicate that may change its value over time needs a successor-state
axiom, which lists all of the possible ways the predicate canbecome true or false.
However, it may be hard to explicitly state all of the possible ways a predicate will hold
true. In real world, it is difficult to define the circumstances under which an action is
guaranteed to work (the qualification problem[56]). For example, grasping the handle
of a tool may fail if it is slippery or electrified or too hot or nailed to the table. If we
fail to include all of these possible situations, the robot can generate false beliefs.

The ramification problemcan also occur, when we cannot predict the exact conse-
quences of actions. For example, lifting a tool from where itwas staying can result in
an unbalanced weight distribution that can cause a collapseof the structure that was
supporting the tool before.

To overcome this type of complications, we can assume that weare in a closed
world and all of the things that are not explicitly changed will stay the same (and all of
the things we do not know about are false).

5.5 Representing Functionality of Objects

An unbiased view of functionality needs to be a domain-independent solution to many
recognition problems. This leads to the question of how functional representation
should be. Davis et. al. [57] listed five important and distinct virtues of knowledge
representation that sometimes conflict in their goals. We will reorder them here to
match their importance in terms of functional representation (FR). The original order-
ing in Davis et. al. is as follows: 3-2-1-5-4.
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1. FR as fragmentary theory of intelligent reasoning:The main purpose in rea-
soning about functionality of tools is to find the best tool that matches the goal.
Therefore, to reason intelligently, we need to have a good idea of what we want
to achieve and what we can achieve with each tool. Thus, we will try to infer
the best match that isrecommendedby the set of inferences the FRsanctionsto
reason intelligently for our purposes.

2. FR as a set of ontological commitments:“All representations are imperfect ap-
proximations to reality [. . . ], selecting a representationmeans making a set of
ontological commitments about how to view the world” [57]. FR is an approxi-
mation of the real world for our purposes; in a sense, seeing the world the way
we want to see and focusing on the things we find relevant for our goals. Hence
for each new task, we need to use a different pair of glasses tofind the right tool.

3. FR as a surrogate:To reason about the objects in our surrounding we need
entities in our reasoning systems that will map to them. Thusa FR will function
“as a surrogate inside the reasoner, a stand-in for the things that exist in the
world” [57]. This role of FR is important because a surrogatethat does not
perfectly match the real object will eventually lead to incorrect reasons to believe
that we can use that object as our tool for our purposes.

4. FR as a medium of expression:FR also serves us as the language with which
we can communicate with the reasoning system by expressing the objects in the
world. For this reason, we need to seek for FR’s that will makeit easier for us
“to talk or think in that language” [57]. Thus the best FR willbe the language
that will serve best for expressing the functional properties of objects as well as
their combined use for our purposes, or as Davis et. al. callsit, the one that is
pragmatically utile.

5. FR as a medium for pragmatically efficient computation:A pragmatically utile
FR needs to be used to communicate and compute with. Thus the use of a FR to
communicate and especially compute efficiently is important yet not as signifi-
cant as the other virtues mentioned before since we do not want to compute with
a FR that is “fast but inadequate for real use” [57].

Finding a good functional representation is not an easy job for a robot trying to
reason about objects in a physical world. The robot may need to switch between rep-
resentations and look at objects from different angles according to the task at hand.
Deciding which one to use will eventually be based on the preferences of the robot
on those virtues listed here; yet the decision of whether or not to switch will be made
according to the benefit gained by the change.

6 Summary

Representing, classifying and recognizing tools by their functionality can provide us
new opportunities for understanding and eventually improving an agent’s interaction
with the physical world. Throughout this paper, we have seenexamples of approaches

26



to functional reasoning in a general framework of tool use. We have collected the
work in this area in categories of interactive and non-interactive approaches and later
grouped them according to the dimensions of functionality and the complexity of the
techniques they credit in increasing the sophistication oftheir modelling capability.

Non-interactive systems are observers that do not interactwith the physical artifacts
or the environment to realize object functionalities. A number of these systems use only
the shape and structure and some extend these with learning and planning; a few use
motion in addition to shape; several add physical and causalrules and some consider
commonsense knowledge for recognizing objects with their functionality.

On the other hand, interactive systems interact with the objects and observe changes
using techniques like haptic exploration, grasp planning,and physical perception to
realize object functionalities. Similarly, a number of these approaches use only the
shape and structure and some extend these by adding work space requirements; several
use physics in addition to shape and some add causal relations.

There have been a couple of general approaches that do not specify any prefer-
ence towards interactive or non-interactive approaches. Freeman and Newell look at
the problem from a design standpoint and try to construct a structure with desired
functionalities starting from a set of structures and theirfunctional specifications. St.
Amant describes an explicitly ecological approach to understanding the nature of tool
use and CYC attempts an expert system in the commonsense world that has shallow
knowledge lacking physical details.

We note and discuss the difficulties that emerge and the issues that need to be
addressed for reasoning about functionality. We believe that our work in the recognition
of tools for specific uses will lead to bridging explanationsthat will enable researchers
to bring robots into the world of human interactions. We envision an emerging need
for applications using functionally aware robots and systems in the future.
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