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Abstract

Tool use is an important characteristic of intelligent hanieehavior. Rep-
resenting, classifying and recognizing tools by their fiorality can provide us
new opportunities for understanding and eventually impigwan agent’s interac-
tion with the physical world. Techniques have been develdpe wide range of
areas within artificial intelligence and other disciplinesepresent and automati-
cally reason about the functionality of tools. This artisleveys past approaches
to reasoning about functionality in the literature andratits to give an overview
of the strengths and weaknesses of previous techniques mieruof issues that
needs to be addressed are also reviewed.
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1 Introduction

In popular thinking, tool use rivals natural language asdbéning characteristic of
intelligent behavior. Mazlish writes [1]:

When humans first appear, they are already holding tools t&Veathe evolution-
ary steps leading to this development, our fossil remairsofithuman and tool
together. Freed from pawing the ground, the released humad ¢an now hold
a stone axe, that is, shaped stone, which obviously giveslaptige edge. The



first reason for tools, then, is that they are part of the peaé natural selection,
giving humans an advantage in their evolutionary struggle.

From an artificial intelligence viewpoint, gaining an unstanding of tools has im-
portant implications. The development of habile (toolrggiagents has been identified
by Nils Nilsson as one of the key challenges in the future afRépresenting, clas-
sifying and recognizing tools by their functionality caropide us new opportunities
for understanding and eventually improving an agent'sradgon with the physical
world. In The Society of MindMarvin Minsky describes “bridge definitions,” as the
best ideas that can bridge between two different worlds\{#. believe that work on
the recognition of tools for specific uses will lead to briggyexplanations to facilitate
researchers’ efforts in bringing robots into the world ofrfan interactions.

Defining tools as physical and functional objects is not asightforward as it
might seem. If our definition is too specific, we may need tdude a large number
of exceptions; if it is too general, we may end up includingpn¢hings that we do
not want. In the Al literature the example of a chair is oftesed to illustrate these
problems. One purposeful definition for a chair is “someghtinat you can sit on.”
However, because you can sit on almost anything, this diefirii too general, includ-
ing such things as floor, food, and other people. At the same, & structural definition
such as “a chair has a sit-able structure that is held betadmtking structure and a
legged-support structure not much taller than the legs afraam” is too specific. It
excludes physical objects we might like to include, suchastarned pails and ap-
propriately shaped rocks. Sowa has described this difficalterms of an “egg-yolk
theory of word meaning” [3]. The basic idea, related to pryjte-based theories in
cognitive modelling and linguistics [4], is that objects shoentral to a given concept
will be found in the yolk of the egg, while objects that areslesmilar will be in the
white part [Fig. 1].

We find this a very interesting approach that can help us lst&mriing from the
functional representations of sample objects in a domaia.ct#h state the basic ap-
proach as follows, using Sowa’s example from the domain afrsh

|- Start with a set of example objects (e.g. chairs).

Il- Based on some level of granularity, find their common el#eristics and
apply these to other objects to find similar ones with the siametionali-
ties.

[lI— If you run out of objects, search deeper into the objepace by ignoring
one or more defining characteristics.

IV— Filter these newly found objects according to the upddtectionalities
and update all objects accordingly until saturation. Totahber of objects
may decrease or increase.

The goals or purpose of the learner are important in ansgeuestions about the
functional similarities of objects. To continue with theaexple of a chair, we might
ask the learner, which objects are most like a chair? We agpéditly assuming that
the functionality of the chair is uppermost in the mind of tharner. However, if the



Figure 1: Egg-yolk theory of the meaning of chair

goal is different (perhaps we want a chair that can be usecetigeya door closed),
then the learner may not be able to make the relevant distimcbecause the yolk of
the egg is partly defined by the goals of the learner.

Similarity, however, is difficult to characterize precigelln the example above,
identifying an object as chair can depend on the goals of tiserwer, the visual sim-
ilarity of the object to other chairs, the ability of the obss to generalize to past
experience with chairs, and so forth.

As a starting point in organizing the potentially vast amoomhinformation that
might be brought to bear on the interpretation of physic@ais as tools, we turn to a
definition from Beck [5]: “Thus tool use is the external emptgent of an unattached
environmental object to alter more efficiently the form,ifioa or condition of another
object, another organism, or the user itself when the uddslow carries the tool during
orjust prior to use and is responsible for the proper anatfieorientation of the tool.”
This definition comes from the literature on non-human ptartaol use but reflects
human tool use as well. Definitions such as this raise a nupfbherportant issues for
artificial intelligence research; tool use and, genergtlgaking, reasoning about the
functionalities of physical artifacts depends on the follg factors and senses:

e Shape: For many tools, shape is a decisive factor in their effectss. For
example, screwdrivers are often sold in sets, in which iddial tools vary in
length, thickness, and the shape of the driver head. Phillgad or slotted screws
much be matched by screwdrivers with particular shapes.



e Planning: Appropriate sequences of actions are key to tool use. Thaiumof
a tool usually makes it obvious what kinds of plans it takes jpa For example,
a mechanic needs to choose the right tool for the job and plaadwhich tools
he will need and which tools he can use in the absence of soneesotAlso,
proper usage of tools often involves appropriate appboadif forces in suitable
amounts.

e Physics:For reasoning about a tool's interactions with other olsjactd measur-
ing how it affects other physical artifacts, we need to halsasic understanding
of the naive physical rules that govern the objects. We cassifly many tools
according to the principles of leverage and lever types. ifrgtance, hammer
claws function as a type-1 lever, where the pivot (fulcrusetween the effort
and the load and therefore the direction of the force changes

e Dynamics:The motion and the dynamic relationships between the pattots
and between the tools and their targets provide cues foreprogage. In the
case of a hammer, for effective use, we need to swing it witftopgr angle and
velocity towards the target. By building systems that obsand learn from this
type of experience, we can find proper and effective usagbaysipal artifacts.

e Causality: Causal relationships between the parts of tools and theiespond-
ing effects on other physical objects help us understandwewan use them
and why they are efficient. For example, in the case of a hapitrtexs a gras-
pable portion and a striking surface that, when used, magecauistortion on
the objects that it hits. We think that if the striking sudastays intact after the
hit and can be “re-usable” afterwards, then we can use tbaatoa hammer.

e Work space environmen# tool needs enough work space to be effectively ap-
plied. A hammer needs swinging room, a screwdriver needsesioa twisting.
Finding enough room for a particular tool is closely relatedpatial planning
and reasoning.

e Design requirementdJsing a tool to achieve a known task requires close inter-
action with the general design goal and requirements of pleeific task. For
example, if we want to nail a carpet to the floor, we may use anhambut we
might instead design a system that involves three hammeichveimable us to
nail in one third of the time.

e Common senseA good understanding of physical objects needs commonsense
knowledge about how to use them and how to match tools witbabbjthat are
available in the environment.

This list suggests that reasoning about the functionafitpals, as well as recog-
nizing and using tools according to their functionalitie=juires a cross-disciplinary
investigation ranging from recognition techniques usexbimputer vision and robotics
to reasoning, representation, and learning methods ficatiintelligence.

We can structure previous work on approaches relevant tautmoand reasoning
about functionality into two main categories: systems ihigract with tools and envi-
ronments, and systems that do not. We further subdivide tt@ggories according to



Non-interactive approaches These models do not interact with the objects to realize
their functionalities. Most are applications in computisian.

Functionality = Shap¢6, 7, 8, 9, 10, 11]

Functionality = Shape + Causalitj12]

Functionality = Shape + Plannin{fL 3]

Functionality = Shape + Dynamid4d.4]

Functionality = Shape + Physics + Causalify5, 16, 17, 18, 19]

Functionality = Common sense theori@9, 21, 22, 23]

Interactive approaches These models interact with the objects to realize theicfun
tionalities. Most are applications in robotics.

Functionality = Shapg24, 25]

Functionality = Shape + Work Spag¢26]

Functionality = Shape + Physid®7, 28, 29, 30, 31, 32]
Functionality = Shape + Physics + Causalif$3]

Abstract approaches These approaches try to model the functionality of objécts
general terms, at a level of abstraction above manipulatiahperception.

Reasoning about design requiremej4]
Ecological reasoning35, 36]

Common sense reasonifiy]

Table 1: Approaches to understanding tool use by functitynal



the dimensions of functionality they consider and the caxipy of the techniques they
use. Table 1 summarizes combinations that have appearkd il titerature. Some
of these methods do not necessarily aim to recognize thdifunradity of an object;
sometimes their sole aim is to recognize objects accordirtbdir functionalities or
recognize functionalities according to the objects.

Over the years, reasoning about functionality has attdaatiention in many disci-
plines, including (but not limited to) robotics, computésien, psychology, and artifi-
cial intelligence; with work originating in image recognit and understanding, (spa-
tial) reasoning, representation and learning. In the radsiof this article we review
a number of past approaches to reasoning about functipiaalit to intelligent use of
physical tools from the literature following the basic angation given in Table 1. We
examine these approaches in categories of interactive@mihteractive systems and
later group them according to the dimensions of functiapaind the complexity of
the techniques they credit in increasing the sophistinaifaheir modelling capability.
Also, we discuss the difficulties that emerge and the iswmEseed to be addressed.

We end with the application of a selection of these techridaea few represen-
tative examples of tools en route to building a tool-usingatsarm. We believe that
work in the recognition of tools for specific uses will leadtidge definitions that will
enable researchers to bring robots into the world of humizndntions.

2 Non-interactive approaches

Many approaches to tool use, mainly those in the field of cdampusion, do not
interact with objects and are limited to the non-contacteptions to realize the func-
tionalities of objects. This vastly constrains the experits that can be done with
them, since they are only observers that cannot have angt effethe environment.
Krotkov [29] describes methods that are limited to non-achperception as super-
ficial, in that they are sensitive only to the surface of th@eob Since they cannot
directly measure properties like density or friction, tlaeg also indeterminate. Never-
theless there is strong intuitive appeal to a non-intera@pproach; experienced tool
users can often recognize the capabilities of a tool simplinspection.

2.1 Functionality = Shape

Models in this category use only the shape of an object togmize its functionality,
with the idea that the shape of an object specifies its funatity. For example, a
hammer can be defined as a T-shaped object with geometritaimtslike the (surface
normal of the) head is nearly perpendicular to the (surfacenal of the) handle, and
the handle is positioned near the center of the head.

Solina and Bajcsy [6] represent generic objects by parts;iware modelled by
super-quadric volumetric primitives. Parts are protogypethat changes in structure
and deformation in the shape of objects are allowed. Eadhhpara set of features
that are used for selecting models from a model database.sdlketed models are
then matched with the part data geometrically. The rec@gnjirocess deforms each
part of the models to match the corresponding object partsatetts the model that



achieves the best match. This system relies on the assuntptibthe shapes of basic
object parts correspond to the function of the artifact.

Vaina and Jaulent [7] recognize function by using shape amdept representa-
tions, object categories, and requirements of actionsy phepose a conceptual model
of compatibility between objects and their usage in hanébast based on pattern
matching. The level of conceptual or structural descriptietermines the relationship
between the object structure and function.

Zlateva and Vaina [38] provide mathematical support for fiienalization and
computation of the shape structure and its representatiatefiving the possible func-
tions of objects. They discuss axis- and boundary-baseldadstfor defining the parts
and subparts of objects. Their method of describing funetity is based on a theorem
from differential geometry, which claims that any regularface can be approximated
in a finite environment to some given accuracy by a paraboRéded on this observa-
tion, they represent convex parts of objects using polydediiinders, ellipsoids, and
generalized cones.

Zlateva and Vaina attach example functionality-to-stuuetfeature mappings by
using the decomposition of the object into largest locadijwex surface patches (LCP).
For instance, the functionality of stability and suppordgto have at least three points
that define a sufficiently planar surface that includes ttagegtion of the center of
gravity. The functionality of an action capability such asf pound” is recognized
by a structure that has an accessible part with a sufficiélatlgurface patch; “can be
rolled” requires that the shape representation at the bideeel is cylindrical.

The LCP method applies to 3D objects such as differentlyastiagenches, differ-
ent types of screws and bolts, and various hacksaws [8]. ibiythat the decomposed
parts relate to specific affordances of the object (see @edtR for further discussion
of this concept): a handle to hold, an opening to grasp thie &dlead to provide sup-
port for the case of a wrench. They also claim that in ordentivkthe use of an object,
we need to infer the proper position of the hands, the doaaiif the action, and the
pressure to be applied. These cannot be learned withoudlsddtions between parts
and subparts, which implies that the parts and subpartstijirelate to affordances of
an object.

Rivlin, Dickinson, and Rosenfeld [9] extend “recognition arts” shape recogni-
tion framework to “recognition by functional parts” by mhing functional primitives
and their relations with volumetric shape primitives argithelations. They aim to of-
fer an object representation that integrates function hage, and address the problem
of recovering shape and function data from either 2D or 3Dgiesa The representa-
tion of object functionality and the matching scheme betwi@e layers of primitives
(functional and shape) can be seen in Fig. 2.

In the shape layer, objects are constructed by using vohimymtmitives with spa-
tial relations between them. In the functional layer, ots§ere represented in terms of
functional primitives and relations. The shape primitiaes mapped to a set of func-
tional primitives and the spatial relations are mapped tet@&functional relations.

The shape representation Rivlin et al. used models objsitg tour classes of vol-
umetric shapes: sticks, strips, plates, and blobs. Thiative dimensions distinguish
these from each other. If al, a2, and a3 represent lengtth el height respectively,
these four classes can be defined as follows:



Functional primitive

Functional

Relation
Shape primitive

Spatial Relation

VV VNV VWV Shape-Function Mappings

————— Functional-Spatial Relation Mappings

Figure 2: Object representation according to functiopalit

Stick: a1 ~as <azVa; ~az <asVas~az < as
Strlp a1§£a2/\a2#a3/\a1§£a3

Plate: a1 ~as > a3V ais ~ a3z > azVas >~ as > as
Blob: a] >~ az >~ as

The functional representation assumes a set of pre-defurediénal primitives
such as an end-effector and a handle in the case of a mamgouiask and a particular
way that these primitives should be joined together.

Although there may be many shape primitives matching a fanat primitive (a
many-to-one relationship) as in the case of chair legs tar tlaae, for simplicity, this
approach is restricted to object models with one-to-onepimgs. Also, by modelling
objects by super-quadrics that support the recovery ofuded parts, the approach
supports reasoning about the functionality of objects éinatonly partially visible.

The function-based object recognition procedure supatts bottom-up and top-
down recognition. In top-down fashion, the system looksfgiven object by mapping
its functional parts to the image, whereas in the bottompg@ach, the system recog-
nizes the object according to the given functional partss fiteans that when working
bottom-up, the object recognized can be unexpected or wkbeforehand but while
working top-down, we know in advance what kind of object wetaying to recognize.

In Rivlin et al.’s approach, functionality is defined only terms of the object’s
coarse volumetric parts found through region segmentatdthough they claim that
segmentation gives them the granularity needed for fogusinlocal object features,
this creates under-segmentation or over-segmentatidibgpns and it relies on opaque
object surface textures. Even after realizing that thetimrabetween function and
structure is many-to-oné,limiting a system to one-to-one matching seems inadequate.

LActually, the relationship is many-to-many since many fioress can map to different structures as well;
for example, hammering functionality can map to the stmectf a hammer, a screwdriver, or even a shoe.



Kim and Nevatia [10] conduct generic object recognitionexxmpents of desks and
doors on real scenes for robot navigation. The recognitf@igmificant surfaces was
achieved by using the orientation, range of heights, shepe size of edges in a real
intensity scene image. Their functional representatidrasacterize objects by their
significant surfaces and name the objects that help thersysibserve the functional
role of another object as “functional evidence.” For exaafihe functional evidence
of a door consists of objects that are seen through when pés .o Algorithms for
detecting a door frame and the legs of a desk are also givexd lmasthe assumptions
that surfaces are planar and objects are in a standard pose.

Li and Lee [11] use accumulative Hopfield matching (AHM) int@uatic object
recognition and learning for articulated object modelseblasn a small number of
images. They accept model-based object recognition as disé effective method for
rigid objects but note that if the object is articulat&dits appearance may change
for different perspectives. They claim that recognitiontimoels based on difference
between the actual image and the model encounter problemestfoulated images
since the structure changes with changing viewpoints.

Li et al. use many-to-one (homomorphic) attributed retadicgraph matching for
recognizing both the shape and the structure of objects ag@s. The angle at the
breakpoints of sub-images and the distance between brigg&poe used as features
for the attributed relational graph representation. The#thod randomly partitions
the input image into many sub-images where Hopfield netwarksised to derive the
isomorphism mappings between sub-images and models. Témsdés are later accu-
mulated by further iteration until a stable matching is test Li et. al. experimented
with various hand tools and keys and were able to find both iects and the poses
they appear in the images. They claim that their method mneetble to 3D images as
well. Li et. al.’s technique recognizes isolated, recigrior occluded images invariant
to translation, rotation, scale, or distortion.

2.2 Functionality = Shape + Causality

These models use only the shape of an object as input butmedgwsal relationships
and learn these relationships to develop a model of funalitgn An early example
is Winston’s work [12] on structural concept learning in tilecks-world domain. To
construct representations of the definitions of concepthénblocks world, Winston
used semantic nets. It was one of the first systems that laamiscept from examples,
learns by imitation, and learns by being told.

In this learning process, the system starts with a struldescription of one known
instance of the concept, calling it the concept definitionroligh the learning process,
this initial definition is amplified according to positivednegative examples encoun-
tered. This definition is thus called the evolving modelslgeneralized by including
descriptions of other instances of the concept and speethby excluding descriptions
of near misses or negative examples. A near miss is an exavhjptt is very similar
to instances of the concept but in fact it is not an instance.

The ANALOGY program [39] of Winston et al. learned the raedatbetween form

2Object consists of rigid components



and function by using semantic nets [40]. He also used Beooliject modelling sys-
tem based on generalized cylinders, ACRONYM [41], for pbgkrepresentations.
The goal was to use functional definitions to identify phgsjaroperties and provide an
example system that can learn physical models using thes&idual definitions [40].

The recognition process of this system involved differésyps. At first, the objectis
described in functional terms, which is translated into@etic net links. For example,
a cup’s functional description is something like “a cup isiadkof object and open-
vessel and it is stable and lift-able.” Semantic knowlediy&stable”, “lift-able”, and
“open-vessel” are then linked to a cup through causal liffkeen the system is given
a physical description of an input object in English, whistsént to the ACRONYM
system for generating the physical model based on genedadiginders. This model
is later extended with the addition of material propertigshsas weight and joint loca-
tions. These additional data are physical properties tteain@possible to obtain from
a vision system. The system then tries to show that the fumatrequirements are still
met by the enhanced physical description and identify tjeabb These functionally
recognized objects’ physical models are later learnedaridhm of if-then rules. Once
these if-then based physical models are learned, the syktesinot need functional
requirements for recognizing any new examples of the cdncep

2.3 Functionality = Shape + Planning

DiManzo et al. [13] regard functional reasoning as the gbtb integrate shape and
function with the help of planning. They describe the diffigwof separating the func-
tion of a tool from the plan it takes part in, since plans arag@volve together and
differentiate with time. Their reasoning system is basea drierarchy of levels that
interact with each other. At the top level, they have a task@an representation that
uses semantic functional descriptors (SFD) and functierpérts (FE) for planning

based on functionality of objects. The object represemtdgvel uses FE's and ge-
ometric primitives to describe objects. The next level iearout function modelling

by describing some basic functions in terms of geometrimjinies, and the last level
performs geometric reasoning by defining geometric coimésra

2.4 Functionality = Shape + Dynamics

These models use the shape, kinematic and dynamic prapefis object (e.g. mo-
tion) to recognize its functionality while the system olvesr the action that is per-
formed with the object.

Duric, Fayman, Rivlin [14] attempt to derive the function ari object from its
motion given a sequence of images of a known object perfayrsinme action. The
motion analysis results in several motion primitives argsthare compared with pre-
viously known motion-to-function mappings. They use bdté motion and shape of
an object because many objects display similar motion chexiatics in their use.

They constrain the many-to-many mappings between funeti@hform with the
help of motion. Optical flow measurements are used to dervéom information for
different objects. The relevant motion is in object’s cdnade system and its relation to
the object it acts on (the actee). This relation is importanéstablishing the mapping
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and creating a frame of reference. Thus, the motion is deivdependently of the
place of action; whether bread is cut on a table or on a walkXample, does not affect
the motion. Duric et al.'s experiments deal with three agttictions: jabbing, stabbing,
and chopping. They also consider two different functidresdi of the same object:
scooping and hitting with a shovel and hammering and tightewith a wrench.

Duric et al.’s approach gives a promising path for learnmmgptgh observing the
motion of objects. A robot capable of seeing and reasoningtaihe function of an
object serving in an action can later recognize and appkgrdtiols that can handle the
same function better than the observed one.

2.5 Functionality = Shape + Physics + Causality

Approaches in this category are some of the most comprefeirsiattempting to
model the functionality of tools. They incorporate all oktfactors discussed up to
this point: shape, physics, and causality.

Brady et al.'s system [15], “Mechanic’s Mate”, is intendedassist a handyman in
generic construction and assembly work and to reason abolst t They investigate
the interaction among planning and reasoning, geomepiesentation of the shapes,
and qualitative and quantitative representations of thedhics in the tool world. Ac-
cording to them, robots need detailed geometric modelsewdglling with the real
world, so understanding of geometry needs to be connectadivé understanding of
naive physics of forces and causation. Also, by focusing bigler order geometrical
representation and their functional interpretation, thltain a computationally more
tractable system.

One of the planning tasks a mechanic needhiosing the right tool for the jab
The generic concept of a tool and functional and geometriatrans helps us distin-
guish one tool from another. If we want to drive tacks intat sedod and if we have
only a sledgehammer, then we might search for another objétia flat section that
can be used as a striking surface like the handle of a scresvdithis is very similar
to finding the optimal solution for a task with the given fuoaglities of objects in the
environment. If we cannot find the optimal tool for the tasle, pick the second best
tool that can handle the same job.

Changing the direction of forces, torques, and impulse®(land fulcrum, pulley,
cam) and devising plans to transmit forces between paniss(ligears, lead screws) are
two main problems that arise in Mechanic’s Mate. To solve¢h&rady et al. give the
general description of sample tools and try to apply thenhéoproblem of peg-out-
of-hole. They later give some of the naive structural regtids of objects’ shape in
the physical world and give some generic knowledge aboirttisage such as “a saw
blade is moved in the direction of its edge.” With these tstia$, they also identify
ways to use these tools properly or broaden their applitabil

Connell and Brady’s system [16] learns shape models fromdinensional ob-
jects by using a substantially modified version of the ANALO@rogram [39] that
Winston et al. used [40]. ANALOGY learns the relation betwéarm and function by
using semantic nets that learned the generalized strlideseription from a sequence
of positive examples by using 2D images. The system usesthaigue of ablation
and learned concepts from disjunctions. Their primary waditon is to understand the
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connection between planning and reasoning about toolstenpresentations of the
objects’ shapes or, in other words, the relation between ford function.

Connell and Brady try to find innovative solutions to constion problems by us-
ing tools that were designed for other purposes in a novel ingyead of learning that
a specific geometric structure is a hammer, their systemsrfat something with a
graspable portion and a striking surface can be used as a éariimey define these
two functional concepts geometrically in terms of shapedpsons. Such as, gras-
pable portionis something that has a spine that is straight and elongateldsides that
are only slightly curved andstriking surfaceds an end of a sub-shape that is blunt and
that is parallel to the spine of the handle. Connell and Bitadght the functionality
of a hammer by defining the grasping and striking requiresyaatordingly, and then
showing it examples of graspable objects that has strikinigees. The programis able
to improvise by taking advantage of having a functional dpsion of a hammerf(nc-
tional improvisation. Thus, given a hammering task without a hammer, they wdee ab
to match the functional description of a hammer to any otkail@able tool. A close
match to the geometric form of another tool implies that it ba used as a hammer by
grasping the handle matched to the graspable portion akihgtthe matched striking
surface. Also, Connell and Brady admit that with the streadttecognition system they
have, the descriptions of even simple shapes typically cm@petween fifty and three
hundred assertions [16]. In the example given, they repteséack hammer with 51
associative triples.

Hodges developed EDISON system [17] in an effort to imitAeliuman device-
using process: match context and object applicabilityeexpent to see if the object
will work, recognize behavior through these experimentsl ase experience to pre-
dict the function and behavior of new objects. The systenga was to represent and
manipulate problem-solving situations that require med® device use by apply-
ing behavioral, functional, and intentional reasoning.I1&DN supported mechanical
improvisation by applying the notion of functional equisate from mechanical prim-
itives (MP) of devices in different situations.

Later, he explored the relationship between the physicgignties of an object, its
functional representation, and its use in problem solvirtt lwis Functional Ontol-
ogy for Naive Mechanics (FONM) model [18]. FONM represeiatatheory identifies
causal relationships between device structure, behduiaction, and use with its in-
terdependent abstraction layers. Device statics repiasmm describes the device at
rest with states (geometric, material, and kinematic priogsy, regions (object shape,
size, and location), relationships, and processes. Deyicamics explain what would
happen when the device is perturbed with behavioral prest{motion, restrain, trans-
form, store, and deform), and device pragmatics layer desshow and why the de-
vice is used with device use plans. Hodges claimed that udiRgequivalence and
appropriate contextual knowledge might solve the problémapping attributes to
function with the vision research on object recognition.

Brand [19] built a system using causal and functional kndgteto see, under-
stand, and manipulate scenes. Understanding a scene& gduysics demonstrates
how scene elements interact and respond to forces and shewsdne’s potential for
action. Brand asserts that systems that use inferenced basmnnectivity and free
space to model a scene’s causal structure display despadperties such as intelligent
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control of the focus of attention and understanding of thenets potential for action
and manipulation.

2.6 Functionality = Common sense theories

These systems try to model physical objects and their fanatities by using the com-
mon sense knowledge of shape, physics, and causality grgeith naive physical
information. With naive physics, we mean the formalizatedfort that Pat Hayes'’s
naive physics manifesto [20] anticipated and the effortgatals implementing physi-
cal reasoning at the common sense level. This type of nadrapnsense physical
knowledge that Hayes talks about is needed to build prdcysiems that are able to
reason and interact with the everyday world around themo,AlsManzo et al. [13]
mention that the relation between shape and function isrdip# on the dynamic
representation of the world, which can be given in terms afenphysics models.

Davis has done considerable amount of work [21, 22, 23, 4A23tds formalizing
the physical world of objects through commonsense naivsiphyknowledge and has
asked an instance of daily physical reasoning problemsatab solutions [43, 44, 45]
for his famous problem of egg-cracking.

One of Davis’s efforts deals with formalizing the kinematuf cutting solid ob-
jects [22]. He shows the geometric aspects of various gutiperations: slicing an
object in half, cutting a notch into an object, stabbing aehtbrough an object, and
carving away the surface of an object. He also gives a listeofhgetric relations be-
tween the shapes and motions of the blades and targets. &opéx he suggests that
a blade needs to be sufficiently thin and hard but he does sotigh its elasticity or
sharpness. In one representation, Davis [22] views thecobg gradually changing
its shape until it is split; when the original object no longeists and two (or more)
new objects form. The alternative representation focuseshanks of material of the
overall object. Until a piece from it is cut away, a chunk éxisnd preserves its shape.
Davis also shows that these two theories are sufficient tp@tgome simple com-
monsense inferences and algorithms.

Davis [23] claims that understanding the relation betwéenshape of an object
and its functions through physical reasoning depends aimesgaowledge and spatial
reasoning, which is difficult to express. For example, e¥evei know the shape of a
screw and understand the relation between its shape anahitidns, it is not easy to
describe or explain these without using a technical voealthat is incomprehensible
for most people.

As Davis suggests [42], real-time correct reasoning abbysipal systems is most
of the time unnecessary because physical objects go thrasghies of unimportant
mode transitions. He gives predicting the exact behaviarrigid block falling down
from a table as an instance. Instead, he proposes a comnsenssasoner that is
concise and close to the mode of transitions in between phlystiates.

Davis's work pulls together many of the separate ideas insglstems discussed
above in an attempt to impose a useful conceptual frameworkark in this area.
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3 Interactive approaches

Non-interactive methods are very helpful in recognizingdidate objects and disam-
biguating others. However, the resulting representatimasot entirely trustworthy,

since the proper usage of an object is usually highly depgnaie interaction. The

models described in this section, most of which are apjdinatin robotics, interact

with objects to recognize their functionalities. Haptigoration, grasp planning, and
physical perception through observing changes in objeetsare physically distorted
are some of the techniques used in this area.

3.1 Functionality = Shape

These models use only the shape of an object to recogniaeittsiénality. The shape
of an object can be represented in different ways usingreiffieknowledge such as the
geometry of the object and the spatial data about it.

Allen’s work [24] tries to determine the attributes of 3D ebfs, especially shape,
through haptic exploratory procedures (EPs). He built &lligent robotic system that
can recognize shape from touch sensing and supported itawitsion algorithm for
autonomous shape recovery. The system uses previousld éBs that can reach
a success rate of 96-99% in identifying object propertieagubaptic exploration.
Allen used grasping by containment, lateral extent andaonfollower perception
techniques to obtain super-quadric surface representdtioe-edge-vertex model and
generalized cylinders of objects correspondingly. Herprieted each representation
acquired from EPs as a constraint system that can be usedderstand the input
scenes. Allen identifies the usage of multiple representatior shape as a key com-
ponent of any working system.

Stansfield [25] presented a model and an implementation obatic haptic sys-
tem based on human haptic exploration and information ging. They used the
exploratory procedures (EP) that were studied in previsysiplogical studies of hu-
man haptics such as using pressure to grasp hardness¢etatict for perceiving tem-
perature, and unsupported holding for measuring the weightthermore, the robot
contained structured-lighting vision and an expert reampsystem performing ob-
ject categorization and grasp generation. The interaetimhmanipulation procedures
added to their robotic system enhanced the perception d#ipslof a robot.

3.2 Functionality = Shape + Work Space

These models use the shape of an object with the workspaeguitres for working
properly to recognize its functionality.

To apply a given tool, Wilson [26, 46] measured geometrieasibility constraints
in the placement volume relative to the other objects whezédol operates. He found
out that determining whether a tool can be applied in a givesembly state is an
instance of the FINDSPACE problem [47]. This spatial planning problem can be
more formally defined as:

SWilson names this problem as the FINDPLACE problem.
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Determine where an object A can be placed, inside some sgpcifi
region R, so that it does not collide with any of the objeBtsalready
placed there.

For an object that is represented as a single point in coriigurspace, the configura-
tions forbidden to it due to other objects can be specifiegg®ns, which are called
configuration space obstacles [47].

Use volumes the minimum free space needed for a subassembly to apptpdh
and placement constraints determine where the volume riedmsplaced relative to
the reference point, which is at the position of required tse. The placement of the
use volume according to the placement constraints is aariostof the FINDSPACE
problem [47].

Through this work, Wilson [26] tries to answer questionstod form, “Is there
space for this tool to be used?” He also mentions that in awedd usage of a tool,
there will be more issues that needs to be addressed, suciliagfihe space required
for a human or robot arm to grasp the tool, choosing the besataong feasible ones,
finding an optimal tool-level plan, designing new tools, aeeéling with changes that
might allow a tool to be used.

3.3 Functionality = Shape + Physics

These models use the shape of an object plus the rules ofgshysit govern their
interactions with each other and the environment to recagjits functionality.

Far [27] introduces a functional reasoning technique daffeialitative Function
Formation (QFF) that views system structures as an orgaorizaf finite number of
interacting component pairs and derived the function fraralitative behavior. QFF
assumes that at least a pair of components is required tadfenctionally (function-
ality in item pair) and interprets a function either as p&tesice or as an order in the
sequence of qualitative states (functionality in stateditton). The technique extends
some qualitative models by including temporal constraamid physical interaction.

Krotkov [29] tries to perceive material properties by aeljwcontacting and prob-
ing them and later sensing the resulting forces, displaoésneounds. This kind of
perception ability is essential for a robotic system to uatdand not only where the
objects are and how they look like but also what they are méde o

The senses of a robot are divided into two groups: non-cbatat contact based
sensing. Krotkov claims that although there are many nariamb sensing methods
available (such as surface luminance for finding coefficdéftiction or using thermal
images for estimating the granularity of objects), deteing the material composition
of an object in a reliable way requires contact with it. Sariif, humans practice this
physical exploration by pressing on, poking, tapping orititg, squeezing, shaking,
rubbing or striking on the objects.

Krotkov observes that non-contact methods are superfieiehise they are sen-
sitive only to the surface of the object and indeterminateesithey cannot directly
measure properties like density or friction. He extendedahquisition of material
properties by procedures like “whack and watch”, “step aral’fand “hit and listen.”
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According to Krotkov, perception of material propertied Wenefit reasoning about
object functionality and also other potential applicaio’Vith the material properties
that can be added to the reasoning process, we can recobatze hard-heeled shoe
could be used as a hammer.

Bogoni and Bajcsy [28] implemented a robotic system thatvers shape and ma-
terial properties and observes the interactions, to @shatiie functionality of a tool.
In the system, there is a compliant wrist that explores tbaked on their features. The
description of the task is formalized using a discrete eggstem [48]. There are two
sensors used: force and end-effector position sensor.r Batgoni and Bajcsy [49]
introduce a formalization of a representation for funcéility that is recovered through
classes of force profiles identifying the dynamics of theiacttion. They did not use
the shape of the object itself for the recognition of the objgior to interaction. They
investigated manipulatory interactions that emphasieerérification and recovery of
the material properties of an object, using exploratiohmégques. One of those inter-
actions, piercing, was tested to reveal if the object is bhpeaf piercing.

They claim that generality of the functionality is depentden the properties as-
sumed. Therefore, inclusion of various properties in dbjepresentation both ben-
efits the acquisition of properties and addresses the aspefinctional recognition
and representation. Although their approach is limitedtis employed in simple ma-
nipulatory interactions, they are able to extend the fumetiity research by (1) using
different sensor modalities for the acquisition of profext(2) incorporating various
material properties as part of the representation, (3)gusiteraction for verifying,
acquiring, and describing the functionality of an objectg 44) extracting functional
features for future interactions and functional recogniti

Bogoni [31] adds contextual information to the previounef. He defines func-
tionality as the application of an object in a specific confex the accomplishment
of a particular purpose. Thus, he considers the modalithefdperation, which is
reflected by the task description and context of applicatibhe modality is the re-
sult of using different sensors for the recovery of matesia functional properties,
where uncertainty and noise can be added from sensors. ludnks models try to
reason bottom-up by acquiring the properties of the objénasare investigated and
by extracting the functional relations between parts. Teisreases the need to make
assumptions about object properties. Also, by focusinghenatcquisition of basic
properties from analyzing functionality, Bogoni aims teate a repertoire of primitive
functional procedures.

Stark and Bowyer's GRUFF [32] is a function-based objecbgaition system that
recognizes objects by classifying them into categoriesdeacribe the functionality
they might serve. It stands for “Generic Representatiomgsorm and Function” and
uses boundary surface descriptions to derive previoudigettknowledge primitives
such as relative orientation, dimension, stability, pnoity, clearance, and enclosure.

The system is based on computer vision techniques for réziagrfunctionality,
and tries to achieve interactive recognition ability by etving the deformations that
happen on objects. In the last section of their book [32];Ksiad Bowyer demonstrate
how to acquire physical and shape properties by analyziagitihulations of object
interaction using an object dynamics modelling system mhfiengWorld [50]. The
interaction was achieved by observing the deformation ¢éaib made of rubber or
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oak from chair category while forces were applied. In a laterk [51], they give
the sequence of steps involved in function verification tigito planned interactions.
First, they change the orientation of the object and checlstfability. If the object
passes this test, they apply force and then test again.dfuetsts are done by applying
force or changing the orientation and checking for deforomaafterwards until the
association measure for the object shape stabilizes belbjedt failed the test) or
above (functionality is verified) a threshold.

The system uses ThingWorld [50] to model the dynamics of tjeats and to gen-
erate planned interactions to verify the suggested funatity of objects. Function-
based recognition is used to recognize object categorigshemir functional require-
ments. This provides both a high level abstraction for re@mnéation and an association
of function to the structure.

GRUFF's knowledge primitives are based on geometricakaland physical con-
straints such as a chair should be able to maintain fundtimmientation after being
seated. To acquire these properties, they use simple opegaich as apply force and
observe deformations, which results ipseudo-interactiveystem. However, these
type of physical constraints exclude chairs that change shape whenever they are
seated such as a beanbag chair. But still, this simple aperan provide as an exam-
ple of how we need to recognize the functionalities of phgisibjects in their physical
world.

Functional properties are defined in terms of knowledge itivies. For the func-
tionality of “provides X handle”, testing the dimensionsdatihe clearance near the
object is needed. Green et al. take a comparable approakhirf3@hich kinematic
properties are investigated where the correspondingifumatrepresentation for scis-
sors and chairs is given.

3.4 Functionality = Shape + Physics + Causality

Models in this category use representations of dynamic ipalyselationships and
shape to recognize the functionality of tools. The recagniprocess is enhanced
by the consideration of causal relationships between thjsach as the predictable or
observable effect on some target object by carrying out tiarawith a tool.

Cooper et al. [33] describes a set of programs that attemganstruct causal ex-
planations of scenes by focusing wy the scene is the way it is aritbw an agent
can interact with it. This causal explanation later formsai® for functional descrip-
tion of scene elements. They focus mainly on the causalisupport, the causality of
objects in static equilibrium. They also show how causatdptons can be exploited
to physically interact with the scene. The solutions thdgraan be applied to many
other problems including occlusion, focus of attentiord grasp planning.

They see function ag match between tool and intentiand believe that function
arises when the physical configuration of an object perrhitgsabject to be used to
satisfy a goal. Causal reasoning can evaluate this matchdgrstanding both physical
and intentional relationships.

They created three different systems. BUSTER (Blocks Ustderder That Ex-
plains its Reasoning) explores and explains blocks worttiEido “sees around” oc-
clusions by using the knowledge of static stability and segting scenes of link-and-
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junction objects. The MugShot system understands how arydtevimteract with and
pick up objects with handles.

3.5 Discussion

Generally speaking, relying on only the shape of an objeatasoning about its func-
tionality is limited. The interaction between tools and fams is affected by how we
use them, and the proper usage of an object is usually higidgrdent on interaction.
Objects can have different potential functionalities amdban only be sure about which
one they are using by observing their behavior. Stahovielvj$ and Shrobe [52] see
this problem and attempt to come up with a large-scale, foneadial ontology for me-
chanical devices that is organized around behavior, nattsire. Even if they give the
structural definition of a lever as “a rigid bar with a pivoatitan rotate,” unless the bar
is used to amplify the force, they accept it as a beam, notex.|@hey also claim that
a causal explanation is needed for differentiating betwberactual and the possible
behavior of a tool.

It is not clever to try to recognize tool functionalities s} looking at tools; since
we do not use them by looking (except in the case of a mirror).agent that is in-
terested in learning how a tool can be used either needs toftoathe changes it
can achieve in the physical world by using the tool or be awérhe rules govern-
ing the creation of those tools. This way, tools are no longened specifically as
hammer but aa-tool-that-can-increase-my-abilities-of-strikindpjects- by-using-the-
governing-rule-number-X

Therefore, we need to search for where these tools come fruhwat is the
underlying functionality that we achieve while using theroer example, we can think
of a hammer as a tool that changes the direction of the fordé&@momentum applied
to it and we can figure out that its functionality is based amlthsic functionality of
a lever®. The human body has itself many levers; for this reason ifyasg tools
according to their lever types seems appealing.

The criterion of success we are going to accept for a systeisisa question of
concern. Given that we have a system that can reason abatichality, how do
we know that it is functionally aware enough? What are thegadey constraints?
Can we say that a system that can use a screwdriver as a hagiumectionally more
intelligent than a system that suggests the usage of a togtekid of a wrist pad? Since
there may be various dimensions along which some reasomthgigue that a system
is based on, becomes limited, and since one can always medesystem to another
given better performance along a dimension, defining a geettion of the degree of
functional intelligence for different systems may be difftc

4(from www.m-w.com): a rigid piece that transmits and modifierce or motion when forces are applied
at two points and it turns about a third; specifically : a rigat used to exert a pressure or sustain a weight
at one point of its length by the application of a force at aaécand turning at a third on a fulcrum.

18



4 Abstract approaches

Finally some models try to realize the functionality of adiewithout any preference
towards interactive or non-interactive systems. Theseé teriake a more generalized
view of the problem, abstracting above the level of percgpsind motor action, while

still attempting to represent the core aspects of the temlguprocess.

4.1 Reasoning about design requirements

According to Freeman and Newell [34], humans ubiquitoushdtto reason in terms
of functions. We name things according to their functionanachine for washing
clothes is called a “washing machine.” In their paper, theyreot really interested in
recognizing objects in terms of their functionalities bes@ning objects and abstract
systems like computer programs that have the desired nxtiThey give a qualitative
model for the task of designing in terms of functions.

In the given model, they assume a set of propositions for¢hefsstructures and
a set of functions of a design task environment. They talkuabmctional connec-
tions that occur between structures that provide functityn@ each other and how a
new structure can be constructed from a set of structures piidpositions they make
can also serve as a model for reasoning about functiondlibbject parts and how
structures can be combined into new structures.

They try to answer the generic design problem:

Given a set of structures and their functional specificati@onstruct a struc-
ture with desired functional properties.

They examine the aspects and the framework of automatedrdsgstems with an

example of qualitative design: a symbol table in computstesys. The design meth-
ods that can be used can be summed in two different groupsdémm or bottom-up

methods. In this context, top-down methods start with treérdd functions and try to
find the structures that provide them, binding the desigiitiées &s possible. Bottom-
up methods start with the structures available and cortdtitger structures until the
desired functionality is reached. Freeman and Newell'skvjd4] is the first system

that attempts to explore the field afitomated functional reasoning

4.2 Ecological reasoning

This work aims to model physical objects and their functlities by using the com-
mon sense knowledge of shape, physics, and causality &rgeith naive physical
information. In addition to that, they try to interact wittbjects with the belief that
interaction is an important part of functionality.

St. Amant’s ecological perspective [35, 36] and their affaf building a robotic
system that can reason about the functionality of tool uskdnly example in this
area that we know of. St. Amant describes an explicitly egioll approach to under-
standing the nature of tool use. He cites the research irhmoman primate cognition
that emphasizes behavior in defining tool use:
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Tool use involvedirect action A striking action with a stone, with the goal of
cracking open a nut, is an example of tool use. Tool use @fiteplifies existing behav-
ior. Using a stick to extend one’s reach is a common aspect ofissoin experimental
settings and in the wild. Tool use g®al-directed activity Sometimes desirable ends
are achieved through the incidental or even accidental fiae object, which is not
considered a tool in that case. Tool use involeBective behavior

St. Amant also gives a taxonomy of tools according to theéérided usage:

o Effectivetools produce a persistent effect on materials or the enmiemt, such
as hammers, saws, screwdrivers after tool use is terminated

e Instrumentsprovide information about materials or the environmentstrin-
ments include measuring tapes, calipers, microscopes agdifging glasses.

e Constrainingtools constrain or stabilize materials or the environmentthe
further application of effective tools. Examples are clarapd rulers.

¢ Delimiting/demarcatingools demarcate the environment or materials, as when
a carpenter uses a pencil to mark a piece of wood, or when gragsises
pushpins or labels on a drafting table.

Many tools fit into different categories at the same time. & pépliers, for exam-
ple, constrains the material it grips, but also can be useah &ffective tool, to pull on
or twist the material.

St. Amant later gives a taxonomy of tools according to thewlegical nature:
Tool use can be@pportunistic Tools can be used for purposes not intended by their
designers and conversely, an object can be used as a todf éwgas not designed as
a tool initially. Toolsprovide rich cues about their appropriate uséhe affordances
of a tool become obvious in its use. Tool useolves establishing and exploiting
constraints(between the user and the tool, the user and the environarehthe tool
and the environment).

One might wave a saw or a hammer in the air, for example, ot avssrewdriver
randomly, as a young child might do. Effective use, howeraxquires the establish-
ment of a constrained relationship between the tool and titenal it acts on.

Tools haveaffordances designed relationships between their physical/dynamic
properties and the properties/abilities of their intendsdrs. Physical affordances,
closely related to constraints, are mutual relationsHips involve both the agent and
the artifacts it manipulates (and the environment it oEsjat

The constraints that are relevant in the use of a tool fadl different categories,
which would include the followingSpatial constraints describe the spatial relation-
ships associated with a tool and its use in an environment. ekample, to use a
hammer one needs enough room to swin@ftysicalconstraints describe physical re-
lationships in the use of the tool, such as weight or dxmamicconstraints describe
movement- or force-related properties of tool use. For gotanone needs to swing a
hammer with appropriate speed in its use.
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4.3 Commonsense reasoning

Commonsense reasoning is a promising technique that ctvatesion formalizing
and finding computational models of how humans reason and thia sensible way.
Minsky [53] believes that users have powerful “commonsékaewledge that helps
them correctly predict the behavior of functional objeatglee screen. He claims that:

“The secret of what X means to us lies in how our represemsitid
X connects to the other things we know.”

He also mentions the need for classifying objects accortdinghat they can be used
for or which goals they can help us achieve [54].

CYC [37] is a very large, long-term effort to formally repesd commonsense
knowledge we have in almost anything. The knowledge standtiis expert system
in commonsense worid shallow and wide and does not go into many physical details
So, its definitions can be categorized as high-level purfpbdefinitions.

4.3.1 Representationin CYCL

CYC'’s high-level purposeful definitions are organized amdwmicro-theories (Mt) that
bundle a set of assertions based on (1) -a shared set of assusgm which the truth of
the assertions depends, or (2) -a shared topic. Etdh a set of abstract concept defi-
nitions and assertions for representing a doramCY C. Specialized micro-theories
depend on more general micro-theories from which they ibbhesertions.

OpenCYCSt is the open source version of CYC technology. The knowledigeb
available is very limited. A specialized micro-theory ofrhan activities is the only
context that the use of some tools is mentioned. The knowlésidnardcoded, and
thus the abilities of tools are limited to what they are siggabto. The “HumanAc-
tivitiesMt” assumes that the people are rational but nobimtive in using tools; tools
are used for their intended purpose and functional impadida such as using a credit
card to unlock a door is not represented.

In the current CYC system, CycL [37] is used as the repretientlanguage. This
is an extended version of the language of first-order préglcaiculus (FOPC). We im-
plemented the representation of tool use in CycL accordiagtological perspective
described in Section 4.2 as follows:

(and
(requiresForRol e ?TU ?A devi ceUsed)
(or (isa ?A Purposeful Action) ;goal-directed activity
(isa ?A ActionOnObject)) ;direct action
;amplifies existing behavior
(requiresForRol e ?TU | nprovenent Event devi ceUsed)
(i sa ?Tuser Animal)
(thereExi sts ?Tuser (beneficiary ?TU ?Tuser))

5Technical sense of context
6At www.opencyc.org.
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We created a ToolUse micro-theory by using the OpenCY C sy#tat is running
on a Linux OS. However, the system’s inferential abilities gestricted in the current
version, which prohibits us from deriving conclusions tiratolve multiple micro-
theories and their physical constraints. For example, ifaneeto achieve functional
improvisation by using CYC, we need to be able to infer thabhbject that has a
graspable portion and a striking surface can serve as a hamme

Even though inferential problems are solved in the neweasas of OpenCYC, its
compatibility with a robotic system that will interact with physical environment as
well as its efficiency in transmitting and executing thodeliences in a timely manner
is questionable. Also, the inability to make any additiomghe inference engine is
another concern.

There are still a couple of problems that face a scientistgu€lYC. To represent
any concept in OpenCYC, we first need to find the micro-thebay it belongs to.
Therefore, we need to have an idea of what each micro-thsoapaout, what they
contain and what are the conceptual relationships betwesn.t If you consider the
amount of knowledge encoded, it becomes more obvious thahged considerable
amount of time to realize where your concept belongs to.

After this first step, you may conclude that the system doékae enough knowl-
edge to represent your concept (either because it is reailgmcoded yet or because
you have not found the possiblenicro-theory) and end up creating your own; just as
we did in the case of ToolUse. Another problem occurs whenrwéotdefine each
of the ecological requirements of tool use since they cargabjective concepts like
“beneficial.”

In addition to that, the micro-theories that we use (eitloetttie whole concept or
its subparts) may be either more general or more specificwinizan we want to cover.
So, to overcome the mismatch in the semantic granularityexfe definitions, you end
up creating your own micro-theories by using more and mogichanes. It is very
likely that you are either forced to use cyclic definitionsresolve to infinitely deep
chain of micro-theory creations.

In the end, our previous egg-yolk theory of the meanings ath@ufunctionalities
of objects end up being vague and the only way to know that yeercthe objects in
your micro-theories is by creating them as instances in anogiate (“impossible”)
micro-theory. So, you end up doing “armchair engineeriragher than conducting
empirical experiments in your physical world.

5 lIssues

There are other issues that still needs to be addressedfalnation based reasoning.
We will try to address these as much as we can here.

"Not correct since we believe that it is nearly impossiblerid the correct micro-theory for your concept.
This is because the concepts already in the system and thy@omeant to represent do not match each other.
Even if they do match and it is represented the way you wansédtuit may be implemented or interpreted
in a different way. Also, since the knowledge base of Open@Yi@t complete and may have discrepancies
with the original CYC, which is proprietary, the trust in stquestionable.
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Optimum tool use
based on constraints

Tool
Constraints

Robot / Agent
Constraints

Task / Goal
Constraints

Figure 3: Needle in a haystack

5.1 Function-based Reasoning: Constraint Programming or Rn-
ning or Common Sense Reasoning?

Function-based reasoning can be seen as a constrainastdisfproblem where func-
tional descriptions constrain structure or structure tamnss functional possibilities.
The mappings available between form and function are dgtoeny-to-many and re-
covering an object by matching previously recognized ohegitionalities experience
combinatorial growth. Model-based recognition has beenght as a solution.

Another view can consider reasoning about functionalitg planning module that
is composed of helper procedures for recognition. In thésvwthe functional descrip-
tion is done at a higher level, discarding the complete epr@tion. A complete
representation of physical world could attempt to represien forces governing the
universe and reach from gravitational forces between pdandorces between chem-
ical compounds and atoms.

Freeman and Newell [34] claim that the uniformity of functé reasoning across
all domains results in emodel-independemeasoning technique that adapts according
to the needs of the reasoner, not the domain. Humans find maypy t@ represent
problems and knowledge so that if one method fails, they tasvability of switching
between them. Minsky [53] accepts commonsense reasonad@sain-independent,
adaptable scheme that switches between representatib@adrof looking for the best.
In this sense, function-based reasoning is similar to cons®ose reasoning.
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As Fig. 3 implies, reaching the optimum tool use may someditne like finding
a needle in a haystack. Selecting the most effective reagdachnique in tool use,
or relying on a combination of previous techniques, is on¢hefissues that needs
further investigation. Fig. 3 also implies that it is podsilo find an arrangement
where the set of constraints do not conflict with each othet, te constraints in an
environment frequently make conflicting assumptions whiey make it impossible
to find an optimal tool use region.

Therefore, a robot will need to have a set of preferencesttiatnable it to find a
compromise between and choose among constraints whench€Huen, the decision
of which constraints to relax and which ones to follow will beade based on the
expected gain overall.

5.2 Top-down or Bottom-up?

The functional recognition process can be broken down imtatypes of methods: top-

down and bottom-up. This division assumes that the probleran facing is a search
problem. Given the functional classifications, top-dowrihmoes start with the desired
functions and try to find the structures that provide thermsti@ining the model as

little as possible. Bottom-up methods start with the strtet available and construct
larger structures until the desired functionality is resthThat's why in the bottom-

up methods, the object recognized is unexpected or unkn@fioréhand but in the

top-down approach, we expect what kind of object we are gryarrecognize.

Tools as well as objects in general can be recognized andnmedsibout in a top-
down fashion, based on conventions for their constructimh @esigners’ intentions
for their use. For example, if an amateur mechanic is workinder his car and has
no appropriate tools for a hammering task within reach, #aest object to hand can
become a hammer. The assessment that an object can be udeghamer is based on
its heft, its grasp-ability, its solidity, and so forth, mat than on the imposition of an
external categorization.

Clearly tools can be recognized and reasoned about in anbvatfofashion, based
on their physical properties and potentially on the obderueof their use. For ex-
ample, hammers conventionally have a long handle and augiioty head with a flat
surface. A carpenter in search of a hammer on his workbenes ot need to reason
about the functionality of all the objects within sight, igtead can simply search for
objects that have the general visual appearance of a hammer.

Consequently, the dilemma boils down to the question of: Weerying to match
some known models that are supposed to give some known dmadities to our ob-
jects, or are we trying to find those models that may suppartesfunctionalities we
seek? How much spatial reasoning do we need to come up wittisysthe criterion
of functionality? As is reflected in much of the preceding kyaffective reasoning
about tool use must rely on a combination of top-down ancblooitip reasoning. How
to combine them effectively also remains for future researc
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5.3 Gestaltian “demand character” versus Gibsonian “affodance”

Psychologists have two different perspectives about tlodogizal existence of ob-
jects. On one side, they claim that the use of objects canreetlji perceived as it
is supported by the idea of demand character of Gestalt@bgects have a demand
character that demands an action and rejects others. Onhéeland, they believe
that the properties of an object can indirectly determine fiaccan be used with the
idea of affordances described by Gibson [55]. The affordaraf an object are the
properties that it offers and, the values and meanings skthethe environment can
be perceived by looking at what it affords.

The difference between these two approaches can be moreushwith an exam-
ple. A Gestaltian will think that a hammer is meant for hamimgwhereas a Gibso-
nian will claim that with its striking surface and its grabp@handle, a hammer affords
hammering.

5.4 Frame Axioms and the Frame Problem

Dynamic state of the real world forces a robot to model alllef actions that can
modify its own or its environment’s state. This is called freme problem since we
are monitoring the environment through the window or frarhalbof the actions we
think that will effect the conditions (relevant actionshieh will result in a reaction in
the robot’s sense-plan-act cycle.

Frame axioms describe how the world stays the same ratheriia the world
changes. Each predicate that may change its value over tiesra successor-state
axiom, which lists all of the possible ways the predicate banome true or false.
However, it may be hard to explicitly state all of the possilyhys a predicate will hold
true. In real world, it is difficult to define the circumstasagnder which an action is
guaranteed to worklfe qualification problenf56]). For example, grasping the handle
of a tool may fail if it is slippery or electrified or too hot oaited to the table. If we
fail to include all of these possible situations, the rokeot generate false beliefs.

The ramification problensan also occur, when we cannot predict the exact conse-
quences of actions. For example, lifting a tool from whergas staying can result in
an unbalanced weight distribution that can cause a collap#iee structure that was
supporting the tool before.

To overcome this type of complications, we can assume thaaneén a closed
world and all of the things that are not explicitly changedl stay the same (and all of
the things we do not know about are false).

5.5 Representing Functionality of Objects

An unbiased view of functionality needs to be a domain-irahefent solution to many
recognition problems. This leads to the question of how tional representation
should be. Davis et. al. [57] listed five important and distinirtues of knowledge
representation that sometimes conflict in their goals. We reorder them here to
match their importance in terms of functional represeatetFR). The original order-
ing in Davis et. al. is as follows: 3-2-1-5-4.
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1. FR as fragmentary theory of intelligent reasoninghe main purpose in rea-
soning about functionality of tools is to find the best toalttmatches the goal.
Therefore, to reason intelligently, we need to have a goed @ what we want
to achieve and what we can achieve with each tool. Thus, wenyito infer
the best match that ircommendedy the set of inferences the Fanctiongo
reason intelligently for our purposes.

2. FR as a set of ontological commitmentall representations are imperfect ap-
proximations to reality [...], selecting a representatio@ans making a set of
ontological commitments about how to view the world” [5S7R I5 an approxi-
mation of the real world for our purposes; in a sense, seéiegvorld the way
we want to see and focusing on the things we find relevant fogoals. Hence
for each new task, we need to use a different pair of glasdawkthe right tool.

3. FR as a surrogate:To reason about the objects in our surrounding we need
entities in our reasoning systems that will map to them. ThER will function
“as a surrogate inside the reasoner, a stand-in for the ghimaf exist in the
world” [57]. This role of FR is important because a surrogtt@t does not
perfectly match the real object will eventually lead to imeet reasons to believe
that we can use that object as our tool for our purposes.

4. FR as a medium of expressioRR also serves us as the language with which
we can communicate with the reasoning system by expredsingftjects in the
world. For this reason, we need to seek for FR’s that will midleasier for us
“to talk or think in that language” [57]. Thus the best FR viol the language
that will serve best for expressing the functional progsrdf objects as well as
their combined use for our purposes, or as Davis et. al. itallse one that is
pragmatically utile.

5. FR as a medium for pragmatically efficient computatiénpragmatically utile
FR needs to be used to communicate and compute with. Thus¢hefa FR to
communicate and especially compute efficiently is impdryah not as signifi-
cant as the other virtues mentioned before since we do ndttevaompute with
a FR that is “fast but inadequate for real use” [57].

Finding a good functional representation is not an easy gotafrobot trying to
reason about objects in a physical world. The robot may neswitch between rep-
resentations and look at objects from different angles raiag to the task at hand.
Deciding which one to use will eventually be based on theguesfces of the robot
on those virtues listed here; yet the decision of whetheobtaswitch will be made
according to the benefit gained by the change.

6 Summary
Representing, classifying and recognizing tools by thaircfionality can provide us

new opportunities for understanding and eventually imprgwan agent’s interaction
with the physical world. Throughout this paper, we have ssemples of approaches
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to functional reasoning in a general framework of tool usee Nive collected the
work in this area in categories of interactive and non-atéve approaches and later
grouped them according to the dimensions of functionality the complexity of the
techniques they credit in increasing the sophisticatiameir modelling capability.

Non-interactive systems are observers that do not inteiiéitthe physical artifacts
or the environmentto realize object functionalities. A raenof these systems use only
the shape and structure and some extend these with learmihglanning; a few use
motion in addition to shape; several add physical and caussd and some consider
commonsense knowledge for recognizing objects with thugictionality.

On the other hand, interactive systems interact with theaibjand observe changes
using techniques like haptic exploration, grasp plannarg] physical perception to
realize object functionalities. Similarly, a number of $beapproaches use only the
shape and structure and some extend these by adding wokkrggpirements; several
use physics in addition to shape and some add causal redation

There have been a couple of general approaches that do reityspey prefer-
ence towards interactive or non-interactive approacheserfan and Newell look at
the problem from a design standpoint and try to constructrucstre with desired
functionalities starting from a set of structures and tfigirctional specifications. St.
Amant describes an explicitly ecological approach to usigerding the nature of tool
use and CYC attempts an expert system in the commonsensg tivatlhas shallow
knowledge lacking physical details.

We note and discuss the difficulties that emerge and thedsthat need to be
addressed for reasoning about functionality. We belieaedtir work in the recognition
of tools for specific uses will lead to bridging explanationat will enable researchers
to bring robots into the world of human interactions. We sion an emerging need
for applications using functionally aware robots and systé the future.
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