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Abstract. This paper describes an analysis tool for dynamic gamindgr@amv
ments. It is based on an image processing system and a cemtingnalysis tool
for extracting the rules that the user is applying in a dgviiame simulation. The
tool is intended for a cognitive modelling architecturetthdl learn from the
user’s previous actions to minimize the amount of assumgtinade to control
the environment. Interaction with the dynamically chaggitsual environments
at real-time is important. This paper discusses our inditdmpt to analyze dy-
namic gaming environments through statistical measurgdearning goal from
previous experiences, the limitations, and its impliaagiéor user interface envi-
ronments that dynamically change.

1 Introduction

Human-computer interaction experiences unbalancedsadéicounterparts in the user
interface, which can only be eased with the introductionef solutions [1]. People
take advantage of a rich verbal and nonverbal set of resswilereas machines have a
set of sensors that map to commands and reactions. Thamgagymmetry limits the
extent of the communication between humans and computgchn&n [2] believes the
solution can be provided by: (1) extending the access of coenp to actions and cir-
cumstances of the user, (2) making the user aware of the denslimits in accessing
those interactional resources, and finally (3) compengé&inthe computer’s inabilities
with computational alternatives.

The designer of an interactive machine, as Suchman [2], ealist ensure that the
user gets proper response from the machine for his acticach Eteractive action
assumes the intent of the actor with an adequate interjmetaft the prior actions and
the intent of the recipient with interpretation of the respes’ implications. Thus, the
interaction between computers and humans is dependenthrotteer’s responses and
their corresponding interpretations.

Interaction with the user interface of gaming environmanésusually unpredictable
and dynamic, which makes them hard to model. In this papeiryte extend the access
of computers to the user actions in a dynamic gaming enviestipdriving simulation,
with an image processing system, and improve the learnitigiedof computers with
a statistical computation tool, namely contingency anslys

This research is a progressive attempt on previous worlkVf&] believe that sta-
tistical techniques may help cognitive modelers to graspttebunderstanding of the



process of human reasoning. Our main goal is to automat& tasks in the interface,
such as driving a car, by analyzing the data that we get fratmthe user and the inter-
face. Also, by providing a system for assessing what theigggying to do, we intend
to provide cognitive modelers with a wider range of tooldwithich their theories can
be generated and tested. With this kind of help we may be almertiimize the amount
of assumptions made to control the environment by cognitieelelers. The work in
this paper describes early steps toward these two goalsraerje as another step to-
ward automated exploration of user interfaces [4] that asidegand help the user. It
can also serve as a computational medium for newly expladteas in user interfaces
such as “programming by example” (PBE) [5] and “programmiygiemonstration”
(PBD) [6]

In the sections below, we describe our approach. Our effwetbased on one of the
three gaming environments mentioned in [3], a driving satioh.

2 Motivation

Our main goal is to automate interactions with the user fater by predicting user’s
intentions by observing previous actions and inputs to tmeputer. The speed of image
processing systems has recently made real-time analysiseén images feasible by
a PBE system. [5] The basic claim of PBE is that you can progséiat you can see.
Based on this claim, cognitive modelers can construct caenpuiograms that simulate
human behavior and reasoning in user interfaces. [3]

Cognitive models are basically computer programs that\eehathe way that hu-
mans behave based on number of heuristic assumptions dmwtiumans do actually
behave”. In this sense, cognitive modelers try to gain imsigto the process of human
reasoning. [3]

A tool that would analyze the data from both the user and ttexfarce will help
cognitive modelers in generating rules and heuristicsttiusers are applying while
interacting with the user interfaces. Such a tool will algtphin automating the user
tasks in an interface. Driving game provides us with a chagileg environment to try
these intriguing ideas.

3 Visual environments and User Interface Softbots

User interface softbots are intelligent software agensigied to control an interac-
tive system through the graphical user interface. Preuvitatsction efforts in softbots
include using statistical pattern recognition technigaled rules and conventions in a
Mac-based environment for finding the building blocks of thgects on the screen via
a statistical search for more abundant forms [4].

We have worked with the 3D driver gaming environment, whoserface is shown
in Figure 1. It is a first-person driving game, in which therdsas control of the speed
and steering of the car. The aim is to drive the car in the gt and avoid accidents
by staying on the road while avoiding obstacles such as oth@cles (e.g. cars, mo-
torcycles). A detailed categorization of visual envirommsds given in [3]. According



to their analysis, the driving game that we focus fits into matdyic, unpredictable, and
complex category in a variety of ways.

Checkpoints: 0 Speed: 33 Driving Time: 28 -

Fig. 1. First-person driving game

As the aim of the experiment is to come up with data that wosiiishin recognizing
the rules humans employ while playing the game, we decidéftthe coordinates of
certain key points that users focus. The image processsigrsy currently, records the
X-coordinate of the center of the game screen (i.e. the otip@sition of the car), the
X-Y coordinates of the midpoint of the right lane at the horiand the X-Y coordinates
of the midpoint of the right lane at some distance from thedyotof the screen (i.e. at
some distance from the car).

For the driving game, the extensions are based on studieswdimdriving. Studies
of driving behavior by Land and Lee [7] and Land and Horwoopdd@scribe a “dou-
ble model” of steering, in which a region of the visual fieldat&ely far away from
the driver (about 4 degrees below the horizon) providesrimé&tion about road cur-
vature, while a closer region (7 degrees below the horizooyiges position-in-lane
information. Attention to the visual field at an intermeadidistance, 5.5 degrees below
the horizon, provides a balance of this information, résglin the best performance.
Interested reader can take a look at the previous systenefails[3].

3.1 Image processing system

As shown in the Figure 2, there are 4 distinct componentsdbiatprise the system.
The various components are explained below:

— Event Observer and Logger: This component is tied to keyboard and timer events.
It triggers the image processing routines to run in a newatlyréased on event
occurances and logs the data returned by the image progessitines. The key-
board events are the left arrow key and the right arrow keytaadimer is set to 3
seconds.
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Fig. 2. System architecture

— Image Processing Substrate: This component captures and processes the game
screen. It returns the values required to be logged, in dalbetter understand
the user’s responses to events in the game.

— SggMan: Segman is the component that the Image Processing Suhstestéo per-
form the low-level image processing tasks, like capturimgdcreen or extracting
pixel information.

— Gaming Environment: The gaming environment has already been described in the
previous section.

More details about the Image Processing Substrate and S$egMabe found in
Shah et. al. [3]. The interaction with the interface objexftthe game can be achieved
via hooks that are provided in the development of the prograrg environment. The
control flow within the system is shown in Figure 2 as well. Aadled analysis of the
image processing routines can be found in Shah et. al. [3].

4 Algorithms for Data Analysis

In our user interface analysis system, we have a numberwdiviand I/O-based sensors
that result in different values for their measurements selreeasurements can be either
one of nominal, ordinal, or boolean such as the existencbserece of an attribute and
our goal would be to make use of such cues that help a humarzeogeason.

Thus, given a set of streams of data, we can try to learn frdmg lboking at the
occurrences of specific attributes. For example, if the remolb cases where the user
steers left when the road curves left occur more frequehtin the cases where the
user steers left when the road does not curve left or the roaes left when the user
does not steer left, then we can say that steering left andnguleft co-occur and are
therefore associated.



This technique of finding the co-occurrence frequenciesatalilating the strength
of association between them is called contingency tabllysisaA contingency table is
a table of cross-classified data in which the attributes ofieharacteristic are matched
with the attributes of other characteristics or their comaltibns to calculate the associ-
ations between them. In the case of matching two charatitstishis is called 2-way
contingency table analysis. An example 2-way contingeabigetis given in Table 1.

Table 1. A 2-Way Contingency Table

Road’'s Middle Point's X

Seering Direction 220 236 195 Total

Left 5 1 2 8
Right 3 6 3 12
Total 8 7 5 20

Strength of association between two characteristics (@-aee found with the fol-
lowing formula:

a: the number of cases they appear together
bi: the number of cases where only first one appear
b,: the number of cases where only second one appear

strength of association = 2%4¢

b1><b2
In the given table, the corresponding associations woulakifellows:

Strength of Association (220, Lef§ X5 = (.39

8x8

Strength of Association (236, Right) 5% — (.43

12x7
Strength of Association (236, Lef§) 21 = 0.02

For our purposes, we would like to generalize the problemoteecN-attributes
andM-values in am-dimensional attribute space. To do this, we need to extem@+
way approach. Let's assume that we ha\egtributes that we acquire from our sensors
and we want to look at the strength of association betweesethbhen, the general
problem becomes selecting the subsets of attributes tipaaapogether according to
the combination subset and finding their associations blihgoat the co-occurrences
of those cases. We know that there 2fenumber of subsets far attributes but not all
of them have enough associative strength.

Finding the attributes that contribute to the relations agndifferent data is a hard
problem to solve since the number of possible subsets isnexjial in size. Ockham'’s



razor is the sharp constraint that claims that the best ytiedhe simplest one that ex-
plains the data. Our contingency analysis program is basetis simplistic idea. To
constrain the subset search space we use the minimum desclmgth (MDL) princi-
ple, which is based on Ockham’s axiom. If we think about th@mites in a contingency
analysis table as the predicates that we can describe arsgstihe rules governing it,
the suitability of the MDL principle becomes more obviouy. i&sing only some num-
ber of attributes, we may reach the same or “good enoughéseptation ability. That's
the reason why we seek to apply MDL principle to the problerohafosing subsets.

4.1 Contingency Table Analysis for N-attributed, M-valuedData

In machine learning, the common approach to contingendysisas through a boolean
attribute vectoA of sizen where methods to map frominstances ofA to a boolean
output are learned. We have extended this system to haleveay contingency anal-
ysis withM-valued data fot instances. The complexity of such analysis is obviously
intractable (i.e. non-polynomial in complexity).

The exponential growth in the number of possibilities rezdnfinite fairly quickly
with continuous data. In the case of the computer screen,teeeigh we know that it is
composed of finite number of pixels, it still poses importamiputational complexity
for such an analysis.

Enumerating the subsets of a set witkelements is usually done by lexicographic
ordering, which counts the subsets starting from the emgty/s lexicographic se-
guence for the subsets of a set of 3 elements is given in Table 2

Table 2. Lexicographic ordering of subsets

Sequenc% Subsets of >, O, &}

000 -
001 (&)
010 {0}
011 {9, 4}
100 {0}
101 Xy
110 {0, 0}
111 (0,9, &}

However, lexicographic ordering does not order the sutasmtsrding to the number
of elements they contain. The element “100” is not foundluralf of the subsets are
traversed. So, if we want to apply MDL principle, we actualBed to order the subsets
by the number of elements in each subset. Loughry et. al.rfgmt an algorithm for



efficiently enumerating the subsets of a set in the orderwésing number of elements
they contain. The Banker’s algorithm [9] provides a reasbmaut-off position when
we do not want any lengthy rules to be generated. So, apptiimd/IDL principle is
easy. The sequence that we get from Banker’s algorithm engiv Table 3.

Table 3. Ordering of subsets according to Banker’s algorithm

Sequenc% Subsets of &, O, #}

000 -
100 {0}
010 {0}
001 (&)
110 (0,0}
101 Xy
011 {9, 4}
111 {0, &}

4.2 Computational complexity

Contingency analysis does a complete search in the passgilhere are a number of
“good-enough” solutions that are based on heuristics [@@sh

Matching a known set of objects consistently to the objeasr@cognize on the
screen is the same problem as finding the maximal clique odistamt labels in re-
gion matching problem experienced in computer vision, Wh& known to be NP-
complete [1]. There are different techniques applied teeasijth the complexity of this
constraint satisfaction problem, such as relaxation lefgeThe idea is if we can repre-
sent the previously known objects as a set of constraintsaweise relaxation labelling
for further relaxing these constraints to match newly redogd ones. This reduces the
computational complexity.

Loughry et. al. [9] also show that using Gray codes or lexiapgic ordering is not
suitable when looking for a minimum subset. Efficiently emuating subsets is im-
portant for this reason since the problem becomes compuntdly intractable without
ordering.

To prune some weak associations beforehand and decreaaathumt of compu-
tation, we are using two thresholds during the analysis. ¥¢eminimum support and
minimum confidence to invalidate the attributes that do ramuo frequent enough in
the whole data set. We have set their values to 0.005 and 6d¥&&spondingly, which
corresponds to 5 to 8 instances in a data set of size 1000.



We need to get enough evidence to come up with some strongiatsso required
for us to associate keystrokes to the user interface orgaoizthat the user is see-
ing. This limitation enforces the data size to be big enowgtsfich associations to be
apparent as well as noise in the data to be relatively smaligimto discard.

5 Experiments

In order to test the efficacy of our tool in analysing dynanmigcimnments, we asked a
couple of users to play the game and recorded their actionelaas certain key points
that we thought would be useful. We got around 500 data pdiata the users and
analyzed them.

The resulting associations and the best twenty set of tks ndrresponding to them
is given in Figure 3. This is the case without any discredizedf the data.

Assoc Combination |C_X X 5Y_5 X_M Y_M X_M2Y_M2 Key
0.67401236/ 00001001 225 0
0.67401236 10000001 198 0
0.45674831 10001001 198 225 0
0.16117217 10000001 198 -1
0.16117217 00001001 225 -1
0.15750016 00001001 225 1
0.15750916 10000001 | 198
0.15062724 00100001 148
0.15012407 00100001 199
0.15012407 00000011 284
0.14868034 00000011 ' 286
0.14815794 00000011 259
0.1415426 00100001 202
0.12702806 00100011 109 284
0.12690026 00000101 0
0.10124126 00100011 148 259
0.09521956 00100011 202 286
0.07917888 00010001 187
0.07858861 00000101 | 0

-0 0000000000 —

Fig. 3. Association strength table according to contingency aigly

We have plotted the graphs of the value of X at two differeahdines. The corre-
sponding graphs can be seen in Figure 4 and Figure 5.

From the two graphs we can conclude that X 5 degrees from thiedmas a better
factor to consider while driving as opposed to X measuredhénniddle of the road
(close to the car). In this experiment, steering directibrl @orresponds to steering
right, O corresponds to no steering, and -1 correspondséwisg left.
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Fig. 4. Graph of the relationship between X 5 Degrees from Horizahthe steering direction
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Fig. 5. Graph of the relationship between X middle and the steerirggtion



6 Conclusion

Our goal in building these systems is to provide cognitivaleders with a wider range
of tools with which their theories can be generated and destethis system, we were
able to find base components of driving environment. We gamhstruct higher order
components by studying the interactions between compsnent

We want to extend our analysis system to larger domains wkiergave more un-
knowns and more possible changes. For this, we are thinKingoe complex gaming
environments as well as other user interfaces where we caitonaiser actions and
automate their tasks.

Previous work [3] used cognitive models to control the syst8ending the rules
to such a system with their corresponding confidence levelddvenable a cognitive
model to learn from the previous examples and the rules geteby them. An in-
telligent user interface helper would eventually need &wridrom examples. Another
possible work would be in robot control where we have margesirs of unrelated data
coming from different sensors. We can easily extend theilpiies into that domain
as well.
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