
Intelligent User Interface Tools

Sameer Rajyaguru and Ergun M. Bicici and Robert St. Amant

Department of Computer Science
North Carolina State University

Raleigh, NC 27695fsrrajyag,embicici,stamantg@csc.ncsu.edu

Abstract. This paper describes an analysis tool for dynamic gaming environ-
ments. It is based on an image processing system and a contingency analysis tool
for extracting the rules that the user is applying in a driving game simulation. The
tool is intended for a cognitive modelling architecture that will learn from the
user’s previous actions to minimize the amount of assumptions made to control
the environment. Interaction with the dynamically changing visual environments
at real-time is important. This paper discusses our initialattempt to analyze dy-
namic gaming environments through statistical measures, our learning goal from
previous experiences, the limitations, and its implications for user interface envi-
ronments that dynamically change.

1 Introduction

Human-computer interaction experiences unbalanced talents of counterparts in the user
interface, which can only be eased with the introduction of new solutions [1]. People
take advantage of a rich verbal and nonverbal set of resources whereas machines have a
set of sensors that map to commands and reactions. The resulting asymmetry limits the
extent of the communication between humans and computers. Suchman [2] believes the
solution can be provided by: (1) extending the access of computers to actions and cir-
cumstances of the user, (2) making the user aware of the computer’s limits in accessing
those interactional resources, and finally (3) compensating for the computer’s inabilities
with computational alternatives.

The designer of an interactive machine, as Suchman [2] calls, must ensure that the
user gets proper response from the machine for his actions. Each interactive action
assumes the intent of the actor with an adequate interpretation of the prior actions and
the intent of the recipient with interpretation of the responses’ implications. Thus, the
interaction between computers and humans is dependent on each other’s responses and
their corresponding interpretations.

Interaction with the user interface of gaming environmentsare usually unpredictable
and dynamic, which makes them hard to model. In this paper, wetry to extend the access
of computers to the user actions in a dynamic gaming environment, driving simulation,
with an image processing system, and improve the learning abilities of computers with
a statistical computation tool, namely contingency analysis.

This research is a progressive attempt on previous work [3].We believe that sta-
tistical techniques may help cognitive modelers to grasp a better understanding of the



process of human reasoning. Our main goal is to automate user’s tasks in the interface,
such as driving a car, by analyzing the data that we get from both the user and the inter-
face. Also, by providing a system for assessing what the useris trying to do, we intend
to provide cognitive modelers with a wider range of tools with which their theories can
be generated and tested. With this kind of help we may be able to minimize the amount
of assumptions made to control the environment by cognitivemodelers. The work in
this paper describes early steps toward these two goals and emerge as another step to-
ward automated exploration of user interfaces [4] that can guide and help the user. It
can also serve as a computational medium for newly exploitedideas in user interfaces
such as “programming by example” (PBE) [5] and “programmingby demonstration”
(PBD) [6]

In the sections below, we describe our approach. Our effortsare based on one of the
three gaming environments mentioned in [3], a driving simulation.

2 Motivation

Our main goal is to automate interactions with the user interface by predicting user’s
intentions by observing previous actions and inputs to the computer. The speed of image
processing systems has recently made real-time analysis ofscreen images feasible by
a PBE system. [5] The basic claim of PBE is that you can programwhat you can see.
Based on this claim, cognitive modelers can construct computer programs that simulate
human behavior and reasoning in user interfaces. [3]

Cognitive models are basically computer programs that behave in the way that hu-
mans behave based on number of heuristic assumptions about “how humans do actually
behave”. In this sense, cognitive modelers try to gain insight into the process of human
reasoning. [3]

A tool that would analyze the data from both the user and the interface will help
cognitive modelers in generating rules and heuristics thatthe users are applying while
interacting with the user interfaces. Such a tool will also help in automating the user
tasks in an interface. Driving game provides us with a challenging environment to try
these intriguing ideas.

3 Visual environments and User Interface Softbots

User interface softbots are intelligent software agents designed to control an interac-
tive system through the graphical user interface. Previousdetection efforts in softbots
include using statistical pattern recognition techniquesand rules and conventions in a
Mac-based environment for finding the building blocks of theobjects on the screen via
a statistical search for more abundant forms [4].

We have worked with the 3D driver gaming environment, whose interface is shown
in Figure 1. It is a first-person driving game, in which the user has control of the speed
and steering of the car. The aim is to drive the car in the rightlane and avoid accidents
by staying on the road while avoiding obstacles such as othervehicles (e.g. cars, mo-
torcycles). A detailed categorization of visual environments is given in [3]. According



to their analysis, the driving game that we focus fits into a dynamic, unpredictable, and
complex category in a variety of ways.

Fig. 1.First-person driving game

As the aim of the experiment is to come up with data that would assist in recognizing
the rules humans employ while playing the game, we decided tolog the coordinates of
certain key points that users focus. The image processing system, currently, records the
X-coordinate of the center of the game screen (i.e. the current position of the car), the
X-Y coordinates of the midpoint of the right lane at the horizon and the X-Y coordinates
of the midpoint of the right lane at some distance from the bottom of the screen (i.e. at
some distance from the car).

For the driving game, the extensions are based on studies of human driving. Studies
of driving behavior by Land and Lee [7] and Land and Horwood [8] describe a “dou-
ble model” of steering, in which a region of the visual field relatively far away from
the driver (about 4 degrees below the horizon) provides information about road cur-
vature, while a closer region (7 degrees below the horizon) provides position-in-lane
information. Attention to the visual field at an intermediate distance, 5.5 degrees below
the horizon, provides a balance of this information, resulting in the best performance.
Interested reader can take a look at the previous system for details [3].

3.1 Image processing system

As shown in the Figure 2, there are 4 distinct components thatcomprise the system.
The various components are explained below:

– Event Observer and Logger: This component is tied to keyboard and timer events.
It triggers the image processing routines to run in a new thread, based on event
occurances and logs the data returned by the image processing routines. The key-
board events are the left arrow key and the right arrow key andthe timer is set to 3
seconds.





a) High level architectural diagram b) Control flow within the system

Fig. 2. System architecture

– Image Processing Substrate: This component captures and processes the game
screen. It returns the values required to be logged, in orderto better understand
the user’s responses to events in the game.

– SegMan: Segman is the component that the Image Processing Substrateuses to per-
form the low-level image processing tasks, like capturing the screen or extracting
pixel information.

– Gaming Environment: The gaming environment has already been described in the
previous section.

More details about the Image Processing Substrate and SegMan can be found in
Shah et. al. [3]. The interaction with the interface objectsof the game can be achieved
via hooks that are provided in the development of the programming environment. The
control flow within the system is shown in Figure 2 as well. A detailed analysis of the
image processing routines can be found in Shah et. al. [3].

4 Algorithms for Data Analysis

In our user interface analysis system, we have a number of visual- and I/O-based sensors
that result in different values for their measurements. These measurements can be either
one of nominal, ordinal, or boolean such as the existence or absence of an attribute and
our goal would be to make use of such cues that help a human cognizer reason.

Thus, given a set of streams of data, we can try to learn from itby looking at the
occurrences of specific attributes. For example, if the number of cases where the user
steers left when the road curves left occur more frequently than the cases where the
user steers left when the road does not curve left or the road curves left when the user
does not steer left, then we can say that steering left and curving left co-occur and are
therefore associated.



This technique of finding the co-occurrence frequencies andcalculating the strength
of association between them is called contingency table analysis. A contingency table is
a table of cross-classified data in which the attributes of each characteristic are matched
with the attributes of other characteristics or their combinations to calculate the associ-
ations between them. In the case of matching two characteristics, this is called 2-way
contingency table analysis. An example 2-way contingency table is given in Table 1.

Table 1.A 2-Way Contingency Table

Road’s Middle Point’s X

Steering Direction 220 236 195 Total

Left 5 1 2 8

Right 3 6 3 12

Total 8 7 5 20

Strength of association between two characteristics (2-way) are found with the fol-
lowing formula:

a: the number of cases they appear together
b1: the number of cases where only first one appear
b2: the number of cases where only second one appear

strength of association = a�ab1�b2
In the given table, the corresponding associations would beas follows:

Strength of Association (220, Left)= 5�58�8 = 0:39
Strength of Association (236, Right)= 6�612�7 = 0:43
Strength of Association (236, Left)= 1�18�7 = 0:02: : :

For our purposes, we would like to generalize the problem to cover N-attributes
andM -values in ann-dimensional attribute space. To do this, we need to extend the 2-
way approach. Let’s assume that we haven attributes that we acquire from our sensors
and we want to look at the strength of association between those. Then, the general
problem becomes selecting the subsets of attributes that appear together according to
the combination subset and finding their associations by looking at the co-occurrences
of those cases. We know that there are2n number of subsets forn attributes but not all
of them have enough associative strength.

Finding the attributes that contribute to the relations among different data is a hard
problem to solve since the number of possible subsets is exponential in size. Ockham’s



razor is the sharp constraint that claims that the best theory is the simplest one that ex-
plains the data. Our contingency analysis program is based on this simplistic idea. To
constrain the subset search space we use the minimum description length (MDL) princi-
ple, which is based on Ockham’s axiom. If we think about the attributes in a contingency
analysis table as the predicates that we can describe a system or the rules governing it,
the suitability of the MDL principle becomes more obvious. By using only some num-
ber of attributes, we may reach the same or “good enough” representation ability. That’s
the reason why we seek to apply MDL principle to the problem ofchoosing subsets.

4.1 Contingency Table Analysis for N-attributed, M-valuedData

In machine learning, the common approach to contingency analysis is through a boolean
attribute vectorA of sizen where methods to map fromI instances ofA to a boolean
output are learned. We have extended this system to have anN-way contingency anal-
ysis withM -valued data forI instances. The complexity of such analysis is obviously
intractable (i.e. non-polynomial in complexity).

The exponential growth in the number of possibilities reaches infinite fairly quickly
with continuous data. In the case of the computer screen, even though we know that it is
composed of finite number of pixels, it still poses importantcomputational complexity
for such an analysis.

Enumerating the subsets of a set withn elements is usually done by lexicographic
ordering, which counts the subsets starting from the empty set. A lexicographic se-
quence for the subsets of a set of 3 elements is given in Table 2.

Table 2.Lexicographic ordering of subsets

Sequence Subsets off},~,�g
000 -

001 f�g
010 f~g
011 f~,�g
100 f}g
101 f},�g
110 f},~g
111 f},~,�g

However, lexicographic ordering does not order the subsetsaccording to the number
of elements they contain. The element “100” is not found until half of the subsets are
traversed. So, if we want to apply MDL principle, we actuallyneed to order the subsets
by the number of elements in each subset. Loughry et. al. [9] present an algorithm for



efficiently enumerating the subsets of a set in the order of increasing number of elements
they contain. The Banker’s algorithm [9] provides a reasonable cut-off position when
we do not want any lengthy rules to be generated. So, applyingthe MDL principle is
easy. The sequence that we get from Banker’s algorithm is given in Table 3.

Table 3.Ordering of subsets according to Banker’s algorithm

Sequence Subsets off},~,�g
000 -

100 f}g
010 f~g
001 f�g
110 f},~g
101 f},�g
011 f~,�g
111 f},~,�g

4.2 Computational complexity

Contingency analysis does a complete search in the possibilities. There are a number of
“good-enough” solutions that are based on heuristics [examples].

Matching a known set of objects consistently to the objects we recognize on the
screen is the same problem as finding the maximal clique of consistent labels in re-
gion matching problem experienced in computer vision, which is known to be NP-
complete [1]. There are different techniques applied to cope with the complexity of this
constraint satisfaction problem, such as relaxation labelling. The idea is if we can repre-
sent the previously known objects as a set of constraints, wecan use relaxation labelling
for further relaxing these constraints to match newly recognized ones. This reduces the
computational complexity.

Loughry et. al. [9] also show that using Gray codes or lexicographic ordering is not
suitable when looking for a minimum subset. Efficiently enumerating subsets is im-
portant for this reason since the problem becomes computationally intractable without
ordering.

To prune some weak associations beforehand and decrease theamount of compu-
tation, we are using two thresholds during the analysis. We use minimum support and
minimum confidence to invalidate the attributes that do not occur frequent enough in
the whole data set. We have set their values to 0.005 and 0.008correspondingly, which
corresponds to 5 to 8 instances in a data set of size 1000.



We need to get enough evidence to come up with some strong association required
for us to associate keystrokes to the user interface organization that the user is see-
ing. This limitation enforces the data size to be big enough for such associations to be
apparent as well as noise in the data to be relatively small enough to discard.

5 Experiments

In order to test the efficacy of our tool in analysing dynamic environments, we asked a
couple of users to play the game and recorded their actions aswell as certain key points
that we thought would be useful. We got around 500 data pointsfrom the users and
analyzed them.

The resulting associations and the best twenty set of the rules corresponding to them
is given in Figure 3. This is the case without any discredization of the data.

Fig. 3. Association strength table according to contingency analysis

We have plotted the graphs of the value of X at two different scan lines. The corre-
sponding graphs can be seen in Figure 4 and Figure 5.

From the two graphs we can conclude that X 5 degrees from the horizon is a better
factor to consider while driving as opposed to X measured in the middle of the road
(close to the car). In this experiment, steering direction of 1 corresponds to steering
right, 0 corresponds to no steering, and -1 corresponds to steering left.



Fig. 4. Graph of the relationship between X 5 Degrees from Horizon and the steering direction

Fig. 5.Graph of the relationship between X middle and the steering direction



6 Conclusion

Our goal in building these systems is to provide cognitive modelers with a wider range
of tools with which their theories can be generated and tested. In this system, we were
able to find base components of driving environment. We plan to construct higher order
components by studying the interactions between components.

We want to extend our analysis system to larger domains wherewe have more un-
knowns and more possible changes. For this, we are thinking of more complex gaming
environments as well as other user interfaces where we can monitor user actions and
automate their tasks.

Previous work [3] used cognitive models to control the system. Sending the rules
to such a system with their corresponding confidence levels would enable a cognitive
model to learn from the previous examples and the rules generated by them. An in-
telligent user interface helper would eventually need to learn from examples. Another
possible work would be in robot control where we have many streams of unrelated data
coming from different sensors. We can easily extend the possibilities into that domain
as well.

References

1. Bicici, E.M.: Prolegomenon to commonsense reasoning in user interfaces (2002) (To appear).
2. Suchman, L.A.: Plans and situated actions: the problem ofhuman-machine communication.

Cambridge University Press, Cambridge, England (1987)
3. Shah, K., Rajyaguru, S., Amant, R.S., Ritter, F.E.: Imageprocessing for cognitive models

in dynamic gaming environments. In: Proceedings of the Fifth International Conference on
Cognitive Modeling (ICCM-03). (2003)

4. Riedl, M.O., Amant, R.S.: Toward automated exploration of interactive systems. In Gil,
Y., Leake, D.B., eds.: Proceedings of the 2002 International Conference on Intelligent User
Interfaces (IUI-02), New York, ACM Press (2002) 135–142

5. Amant, R.S., Lieberman, H., Potter, R., Zettlemoyer, L.:Programming by example: visual
generalization in programming by example. Communicationsof the ACM 43 (2000) 107–
114

6. Cypher, A., Halbert, D.C., Kurlander, D., Lieberman, H.,Maulsby, D., Myers, B.A., Turran-
sky, A., eds.: Watch What I Do: Programming by Demonstration. MIT Press, Cambridge,
MA (1993)

7. Land, M., Lee, D.: Where we look when we steer. Nature369(1994) 742–744
8. Land, M., Horwood, J.: Which parts of the road guide steering? Nature377(1995) 339–340
9. Loughry, J., van Hemert, J., Schoofs, L.: Efficiently enumerating the subsets of a set. (2000)


